期刊文献+
共找到4,732篇文章
< 1 2 237 >
每页显示 20 50 100
An Energy Optimization Algorithm for WRSN Nodes Based on Regional Partitioning and Inter-Layer Routing
1
作者 Cui Zhang Lieping Zhang +2 位作者 Huaquan Gan Hongyuan Chen Zhihao Li 《Computers, Materials & Continua》 2025年第8期3125-3148,共24页
In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith... In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively. 展开更多
关键词 Wireless rechargeable sensor network regional partitioning inter-layer routing energy optimization
在线阅读 下载PDF
A Fuzzy Multi-Objective Framework for Energy Optimization and Reliable Routing in Wireless Sensor Networks via Particle Swarm Optimization
2
作者 Medhat A.Tawfeek Ibrahim Alrashdi +1 位作者 Madallah Alruwaili Fatma M.Talaat 《Computers, Materials & Continua》 2025年第5期2773-2792,共20页
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectu... Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past decade.Much work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,etc.This research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest path.Many optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting objectives.To address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective framework.The proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two objectives.The search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing methods.The PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective fitness.The fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing decisions.These adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network conditions.The proposed multi-objective PSO-fuzzy model is evaluated using NS-3 simulation.The results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art techniques.The proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended network lifetime.Furthermore,analysis using p-values obtained from multiple performance measures(p-values<0.05)showed that the proposed approach outperforms with a high level of confidence.The proposed multi-objective PSO-fuzzy model provides a robust and scalable solution to improve the performance of WSNs.It allows stable performance in networks with 100 to 300 nodes,under varying node densities,and across different base station placements.Computational complexity analysis has shown that the method fits well into large-scale WSNs and that the addition of fuzzy logic controls the power usage to make the system practical for real-world use. 展开更多
关键词 Wireless sensor networks particle swarm optimization fuzzy multi-objective framework routing stability
在线阅读 下载PDF
Enhancing Urban Rail Transit Train Routes Planning Using Surrogate-Assisted Fish Migration Optimization
3
作者 Zhigang Du Jengshyang Pan +2 位作者 Xiaoyang Wang Shuchuan Chu Shaoquan Ni 《Journal of Bionic Engineering》 2025年第4期1702-1716,共15页
Meta-heuristic evolutionary algorithms have become widely used for solving complex optimization problems.However,their effectiveness in real-world applications is often limited by the need for many evaluations,which c... Meta-heuristic evolutionary algorithms have become widely used for solving complex optimization problems.However,their effectiveness in real-world applications is often limited by the need for many evaluations,which can be both costly and time-consuming.This is especially true for large-scale transportation networks,where the size of the problem and the high computational cost can hinder the algorithm’s performance.To address these challenges,recent research has focused on using surrogate-assisted models.These models aim to reduce the number of expensive evaluations and improve the efficiency of solving time-consuming optimization problems.This paper presents a new two-layer Surrogate-Assisted Fish Migration Optimization(SA-FMO)algorithm designed to tackle high-dimensional and computationally heavy problems.The global surrogate model offers a good approximation of the entire problem space,while the local surrogate model focuses on refining the solution near the current best option,improving local optimization.To test the effectiveness of the SA-FMO algorithm,we first conduct experiments using six benchmark functions in a 50-dimensional space.We then apply the algorithm to optimize urban rail transit routes,focusing on the Train Routing Optimization problem.This aims to improve operational efficiency and vehicle turnover in situations with uneven passenger flow during transit disruptions.The results show that SA-FMO can effectively improve optimization outcomes in complex transportation scenarios. 展开更多
关键词 Train routing optimization Surrogate-assisted Fish migration optimization Meta-heuristic evolutionary algorithm
在线阅读 下载PDF
Optimized Metaheuristic Strategies for Addressing the Multi-Picker Robot Routing Problem in 3D Warehouse Operations
4
作者 Thi My Binh Nguyen Thi Hoa Hue Nguyen Thi Ngoc Huyen Do 《Computers, Materials & Continua》 2025年第9期5063-5076,共14页
Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the o... Efficient warehouse management is critical for modern supply chain systems,particularly in the era of e-commerce and automation.The Multi-Picker Robot Routing Problem(MPRRP)presents a complex challenge involving the optimization of routes for multiple robots assigned to retrieve items from distinct locations within a warehouse.This study introduces optimized metaheuristic strategies to address MPRRP,with the aim of minimizing travel distances,energy consumption,and order fulfillment time while ensuring operational efficiency.Advanced algorithms,including an enhanced Particle Swarm Optimization(PSO-MPRRP)and a tailored Genetic Algorithm(GA-MPRRP),are specifically designed with customized evolutionary operators to effectively solve the MPRRP.Comparative experiments are conducted to evaluate the proposed strategies against benchmark approaches,demonstrating significant improvements in solution quality and computational efficiency.The findings contribute to the development of intelligent,scalable,and environmentally friendly warehouse systems,paving the way for future advances in robotics and automated logistics management. 展开更多
关键词 Particle swarm optimization algorithm genetic algorithm multi-picker robot routing problem
在线阅读 下载PDF
QoS Routing Optimization Based on Deep Reinforcement Learning in SDN 被引量:2
5
作者 Yu Song Xusheng Qian +2 位作者 Nan Zhang Wei Wang Ao Xiong 《Computers, Materials & Continua》 SCIE EI 2024年第5期3007-3021,共15页
To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQu... To enhance the efficiency and expediency of issuing e-licenses within the power sector, we must confront thechallenge of managing the surging demand for data traffic. Within this realm, the network imposes stringentQuality of Service (QoS) requirements, revealing the inadequacies of traditional routing allocation mechanismsin accommodating such extensive data flows. In response to the imperative of handling a substantial influx of datarequests promptly and alleviating the constraints of existing technologies and network congestion, we present anarchitecture forQoS routing optimizationwith in SoftwareDefinedNetwork (SDN), leveraging deep reinforcementlearning. This innovative approach entails the separation of SDN control and transmission functionalities, centralizingcontrol over data forwardingwhile integrating deep reinforcement learning for informed routing decisions. Byfactoring in considerations such as delay, bandwidth, jitter rate, and packet loss rate, we design a reward function toguide theDeepDeterministic PolicyGradient (DDPG) algorithmin learning the optimal routing strategy to furnishsuperior QoS provision. In our empirical investigations, we juxtapose the performance of Deep ReinforcementLearning (DRL) against that of Shortest Path (SP) algorithms in terms of data packet transmission delay. Theexperimental simulation results show that our proposed algorithm has significant efficacy in reducing networkdelay and improving the overall transmission efficiency, which is superior to the traditional methods. 展开更多
关键词 Deep reinforcement learning SDN route optimization QOS
在线阅读 下载PDF
AQROM:A quality of service aware routing optimization mechanism based on asynchronous advantage actor-critic in software-defined networks 被引量:1
6
作者 Wei Zhou Xing Jiang +4 位作者 Qingsong Luo Bingli Guo Xiang Sun Fengyuan Sun Lingyu Meng 《Digital Communications and Networks》 CSCD 2024年第5期1405-1414,共10页
In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of... In Software-Defined Networks(SDNs),determining how to efficiently achieve Quality of Service(QoS)-aware routing is challenging but critical for significantly improving the performance of a network,where the metrics of QoS can be defined as,for example,average latency,packet loss ratio,and throughput.The SDN controller can use network statistics and a Deep Reinforcement Learning(DRL)method to resolve this challenge.In this paper,we formulate dynamic routing in an SDN as a Markov decision process and propose a DRL algorithm called the Asynchronous Advantage Actor-Critic QoS-aware Routing Optimization Mechanism(AQROM)to determine routing strategies that balance the traffic loads in the network.AQROM can improve the QoS of the network and reduce the training time via dynamic routing strategy updates;that is,the reward function can be dynamically and promptly altered based on the optimization objective regardless of the network topology and traffic pattern.AQROM can be considered as one-step optimization and a black-box routing mechanism in high-dimensional input and output sets for both discrete and continuous states,and actions with respect to the operations in the SDN.Extensive simulations were conducted using OMNeT++and the results demonstrated that AQROM 1)achieved much faster and stable convergence than the Deep Deterministic Policy Gradient(DDPG)and Advantage Actor-Critic(A2C),2)incurred a lower packet loss ratio and latency than Open Shortest Path First(OSPF),DDPG,and A2C,and 3)resulted in higher and more stable throughput than OSPF,DDPG,and A2C. 展开更多
关键词 Software-defined networks Asynchronous advantage actor-critic QoS-aware routing optimization mechanism
在线阅读 下载PDF
A Two-Stage Scenario-Based Robust Optimization Model and a Column-Row Generation Method for Integrated Aircraft Maintenance-Routing and Crew Rostering
7
作者 Khalilallah Memarzadeh Hamed Kazemipoor +1 位作者 Mohammad Fallah Babak Farhang Moghaddam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第11期1275-1304,共30页
Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruption... Motivated by a critical issue of airline planning process,this paper addresses a new two-stage scenario-based robust optimization in operational airline planning to cope with uncertainty and possible flight disruptions.Following the route network scheme and generated flight timetables,aircraft maintenance routing and crew scheduling are critical factors in airline planning and operations cost management.This study considers the simultaneous assignment of aircraft fleet and crew to the scheduled flight while satisfying a set of operational constraints,rules,and regulations.Considering multiple locations for airline maintenance and crew bases,we solve the problem of integrated Aircraft Maintenance Routing and Crew Rostering(AMRCR)to achieve the minimum airline cost.One real challenge to the efficiency of the planning results is the possible disruptions in the initial scheduled flights.Due to the fact that disruption scenarios are expressed discretely with a specified probability,and we provide adjustable decisions under disruption to deal with this disruption risk,we provide a Two-Stage Scenario-Based Robust Optimization(TSRO)model.In this model,here-and-now or first-stage variables are the initial resource assignment.Furthermore,to adapt itself to different disruption scenarios,the model considers some adjustable variables,such as the decision to cancel the flight in case of disruption,as wait-and-see or second-stage variables.Considering the complexity of integrated models,and the scenario-based decomposable structure of the TRSO model to solve it with better computational performance,we apply the column and row generation(CRG)method that iteratively considers the disruption scenarios.The numerical results confirm the applicability of the proposed TSRO model in providing the AMRCR problem with an integrated and robust solution with an acceptable level of computational tractability.To evaluate the proposed TSRO model,which solves the AMRCR problem in an integrated and robust manner,five Key Performance Indicators(KPIs)like Number of delayed/canceled flights,Average delay time,and Average profit are taken into account.As key results driven by conducting a case study,we show the proposed TSRO model has substantially improved the solutions at all indicators compared with those of the sequential/non-integrated and nominal/non-robust models.The simulated instances used to assess the performance of the proposed model and CRG method reveal that both CPLEX and the CRG method exhibit comparable and nearly optimal performance for small-scale problems.However,for large-scale instances the proposed TSRO model falls short in terms of computational efficiency.Conversely,the proposed CRG method is capable of significantly reducing computational time and the optimality gap to an acceptable level. 展开更多
关键词 Aircraft maintenance routing crew scheduling ROSTERING uncertainty scenario-based robust optimization column and row generation
在线阅读 下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
8
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
在线阅读 下载PDF
Algorithm and Application in Vehicle Routing Problem: A Review
9
作者 Zhenyu Chen 《Journal of Electronic Research and Application》 2025年第2期166-174,共9页
This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operat... This paper systematically reviews the latest research developments in Vehicle Routing Problems(VRP).It examines classical VRP models and their classifications across different dimensions,including load capacity,operational characteristics,optimization objectives,vehicle types,and time constraints.Based on literature retrieval results from the Web of Science database,the paper analyzes the current state and trends in VRP research,providing detailed explanations of VRP models and algorithms applied to various scenarios in recent years.Additionally,the article discusses limitations in existing research and provides perspectives on future development trends in VRP research.This review offers researchers in the VRP field a comprehensive overview while identifying future research directions. 展开更多
关键词 Vehicle routing problem VRP Delivery route optimization Logistics planning
在线阅读 下载PDF
C-SPPO:A deep reinforcement learning framework for large-scale dynamic logistics UAV routing problem
10
作者 Fei WANG Honghai ZHANG +2 位作者 Sen DU Mingzhuang HUA Gang ZHONG 《Chinese Journal of Aeronautics》 2025年第5期296-316,共21页
Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-S... Unmanned Aerial Vehicle(UAV)stands as a burgeoning electric transportation carrier,holding substantial promise for the logistics sector.A reinforcement learning framework Centralized-S Proximal Policy Optimization(C-SPPO)based on centralized decision process and considering policy entropy(S)is proposed.The proposed framework aims to plan the best scheduling scheme with the objective of minimizing both the timeout of order requests and the flight impact of UAVs that may lead to conflicts.In this framework,the intents of matching act are generated through the observations of UAV agents,and the ultimate conflict-free matching results are output under the guidance of a centralized decision maker.Concurrently,a pre-activation operation is introduced to further enhance the cooperation among UAV agents.Simulation experiments based on real-world data from New York City are conducted.The results indicate that the proposed CSPPO outperforms the baseline algorithms in the Average Delay Time(ADT),the Maximum Delay Time(MDT),the Order Delay Rate(ODR),the Average Flight Distance(AFD),and the Flight Impact Ratio(FIR).Furthermore,the framework demonstrates scalability to scenarios of different sizes without requiring additional training. 展开更多
关键词 Unmanned aerial vehicle Vehicle routing problem Orderdelivery Reinforcement learning MULTI-AGENT Proximal policy optimization
原文传递
An Adaptive Hybrid Metaheuristic for Solving the Vehicle Routing Problem with Time Windows under Uncertainty
11
作者 Manuel J.C.S.Reis 《Computers, Materials & Continua》 2025年第11期3023-3039,共17页
The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic ... The Vehicle Routing Problem with Time Windows(VRPTW)presents a significant challenge in combinatorial optimization,especially under real-world uncertainties such as variable travel times,service durations,and dynamic customer demands.These uncertainties make traditional deterministic models inadequate,often leading to suboptimal or infeasible solutions.To address these challenges,this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms(GA)with Local Search(LS),while incorporating stochastic uncertainty modeling through probabilistic travel times.The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance.This adaptivity enhances the algorithm’s ability to balance exploration and exploitation during the optimization process.Travel time uncertainties are modeled using Gaussian noise,and solution robustness is evaluated through scenario-based simulations.We test our method on a set of benchmark problems from Solomon’s instance suite,comparing its performance under deterministic and stochastic conditions.Results show that the proposed hybrid approach achieves up to a 9%reduction in expected total travel time and a 40% reduction in time window violations compared to baseline methods,including classical GA and non-adaptive hybrids.Additionally,the algorithm demonstrates strong robustness,with lower solution variance across uncertainty scenarios,and converges faster than competing approaches.These findings highlight the method’s suitability for practical logistics applications such as last-mile delivery and real-time transportation planning,where uncertainty and service-level constraints are critical.The flexibility and effectiveness of the proposed framework make it a promising candidate for deployment in dynamic,uncertainty-aware supply chain environments. 展开更多
关键词 Vehicle routing problem with time windows(VRPTW) hybrid metaheuristic genetic algorithm local search uncertainty modeling stochastic optimization adaptive algorithms combinatorial optimization transportation and logistics robust scheduling
在线阅读 下载PDF
Load Balancing-Based Routing Optimization Mechanism for Power Communication Networks 被引量:13
12
作者 Ningzhe Xing Siya Xu +1 位作者 Sidong Zhang Shaoyong Guo 《China Communications》 SCIE CSCD 2016年第8期169-176,共8页
In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route... In power communication networks, it is a challenge to decrease the risk of different services efficiently to improve operation reliability. One of the important factor in reflecting communication risk is service route distribution. However, existing routing algorithms do not take into account the degree of importance of services, thereby leading to load unbalancing and increasing the risks of services and networks. A routing optimization mechanism based on load balancing for power communication networks is proposed to address the abovementioned problems. First, the mechanism constructs an evaluation model to evaluate the service and network risk degree using combination of devices, service load, and service characteristics. Second, service weights are determined with modified relative entropy TOPSIS method, and a balanced service routing determination algorithm is proposed. Results of simulations on practical network topology show that the mechanism can optimize the network risk degree and load balancing degree efficiently. 展开更多
关键词 power communication networks load balancing routing optimization
在线阅读 下载PDF
Application of Improved Multi-Objective Ant Colony Optimization Algorithm in Ship Weather Routing 被引量:9
13
作者 ZHANG Guangyu WANG Hongbo +2 位作者 ZHAO Wei GUAN Zhiying LI Pengfei 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第1期45-55,共11页
This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation... This paper presents a novel intelligent and effective method based on an improved ant colony optimization(ACO)algorithm to solve the multi-objective ship weather routing optimization problem,considering the navigation safety,fuel consumption,and sailing time.Here the improvement of the ACO algorithm is mainly reflected in two aspects.First,to make the classical ACO algorithm more suitable for long-distance ship weather routing and plan a smoother route,the basic parameters of the algorithm are improved,and new control factors are introduced.Second,to improve the situation of too few Pareto non-dominated solutions generated by the algorithm for solving multi-objective problems,the related operations of crossover,recombination,and mutation in the genetic algorithm are introduced in the improved ACO algorithm.The final simulation results prove the effectiveness of the improved algorithm in solving multi-objective weather routing optimization problems.In addition,the black-box model method was used to study the ship fuel consumption during a voyage;the model was constructed based on an artificial neural network.The parameters of the neural network model were refined repeatedly through the historical navigation data of the test ship,and then the trained black-box model was used to predict the future fuel consumption of the test ship.Compared with other fuel consumption calculation methods,the black-box model method showed higher accuracy and applicability. 展开更多
关键词 multi-objective optimization weather routing ACO algorithm fuel consumption
在线阅读 下载PDF
Hybrid discrete particle swarm optimization algorithm for capacitated vehicle routing problem 被引量:27
14
作者 CHEN Ai-ling YANG Gen-ke WU Zhi-ming 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第4期607-614,共8页
Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational comp... Capacitated vehicle routing problem (CVRP) is an NP-hard problem. For large-scale problems, it is quite difficult to achieve an optimal solution with traditional optimization methods due to the high computational complexity. A new hybrid ap- proximation algorithm is developed in this work to solve the problem. In the hybrid algorithm, discrete particle swarm optimiza- tion (DPSO) combines global search and local search to search for the optimal results and simulated annealing (SA) uses certain probability to avoid being trapped in a local optimum. The computational study showed that the proposed algorithm is a feasible and effective approach for capacitated vehicle routing problem, especially for large scale problems. 展开更多
关键词 Capacitated routing problem Discrete particle swarm optimization (DPSO) Simulated annealing (SA)
在线阅读 下载PDF
Multi-Objective Weather Routing Algorithm for Ships Based on Hybrid Particle Swarm Optimization 被引量:2
15
作者 ZHAO Wei WANG Hongbo +3 位作者 GENG Jianning HU Wenmei ZHANG Zhanshuo ZHANG Guangyu 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第1期28-38,共11页
Maritime transportation has become an important part of the international trade system.To promote its sustainable de-velopment,it is necessary to reduce the fuel consumption of ships,decrease navigation risks,and shor... Maritime transportation has become an important part of the international trade system.To promote its sustainable de-velopment,it is necessary to reduce the fuel consumption of ships,decrease navigation risks,and shorten the navigation time.Ac-cordingly,planning a multi-objective route for ships is an effective way to achieve these goals.In this paper,we propose a multi-ob-jective optimal ship weather routing system framework.Based on this framework,a ship route model,ship fuel consumption model,and navigation risk model are established,and a non-dominated sorting and multi-objective ship weather routing algorithm based on particle swarm optimization is proposed.To fasten the convergence of the algorithm and improve the diversity of route solutions,a mutation operation and an elite selection operation are introduced in the algorithm.Based on the Pareto optimal front and Pareto optimal solution set obtained by the algorithm,a recommended route selection criterion is designed.Finally,two sets of simulated navigation simulation experiments on a container ship are conducted.The experimental results show that the proposed multi-objective optimal weather routing system can be used to plan a ship route with low navigation risk,short navigation time,and low fuel consumption,fulfilling the safety,efficiency,and economic goals. 展开更多
关键词 weather routing particle swarm optimization route planning multi-objective optimization
在线阅读 下载PDF
An Overview and Experimental Study of Learning-Based Optimization Algorithms for the Vehicle Routing Problem 被引量:7
16
作者 Bingjie Li Guohua Wu +2 位作者 Yongming He Mingfeng Fan Witold Pedrycz 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第7期1115-1138,共24页
The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contribute... The vehicle routing problem(VRP)is a typical discrete combinatorial optimization problem,and many models and algorithms have been proposed to solve the VRP and its variants.Although existing approaches have contributed significantly to the development of this field,these approaches either are limited in problem size or need manual intervention in choosing parameters.To solve these difficulties,many studies have considered learning-based optimization(LBO)algorithms to solve the VRP.This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.We performed a statistical analysis of the reviewed articles from various aspects and designed three experiments to evaluate the performance of four representative LBO algorithms.Finally,we conclude the applicable types of problems for different LBO algorithms and suggest directions in which researchers can improve LBO algorithms. 展开更多
关键词 End-to-end approaches learning-based optimization(LBO)algorithms reinforcement learning step-by-step approaches vehicle routing problem(VRP)
在线阅读 下载PDF
Multi-ACO Application in Routing and Scheduling Optimization of Maintenance Fleet (RSOMF) Based on Conditions for Offshore Wind Farms 被引量:2
17
作者 Zhenyou Zhang 《Journal of Power and Energy Engineering》 2018年第10期20-40,共21页
Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving... Reducing the operation and maintenance (O & M) cost is one of the potential actions that could reduce the cost of energy produced by offshore wind farms. This article attempts to reduce O & M cost by improving the utilization of the maintenance resources, specifically the efficient scheduling and routing of the maintenance fleet. Scheduling and routing of maintenance fleet is a non-linear optimization problem with high complexity and a number of constraints. A heuristic algorithm, Ant Colony Optimization (ACO), was modified as Multi-ACO to be used to find the optimal scheduling and routing of maintenance fleet. The numerical studies showed that the proposed methodology was effective and robust enough to find the optimal solution even if the number of offshore wind turbine increases. The suggested approaches are helpful to avoid a time-consuming process of manually planning the scheduling and routing with a presumably suboptimal outcome. 展开更多
关键词 Multi-Ant COLONY optimization Offshore Wind FARM Fleeting Scheduling and routing Operation and Maintenance
暂未订购
The Information Modeling and Intelligent Optimization Method for Logistics Vehicle Routing and Scheduling with Multi-objective and Multi-constraint 被引量:2
18
作者 李蓓智 周亚勤 +1 位作者 兰世海 杨建国 《Journal of Donghua University(English Edition)》 EI CAS 2007年第4期455-459,466,共6页
The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering... The vehicle routing and scheduling (VRS) problem with multi-objective and multi-constraint is analyzed, considering the complexity of the modern logistics in city economy and daily life based on the system engineering. The objective and constraint includes loading, the dispatch and arrival time, transportation conditions,total cost,etc. An information model and a mathematical model are built,and a method based on knowledge and biologic immunity is put forward for optimizing and evaluating the programs dimensions in vehicle routing and scheduling with multi-objective and multi-constraints. The proposed model and method are illustrated in a case study concerning a transport network, and the result shows that more optimization solutions can be easily obtained and the method is efficient and feasible. Comparing with the standard GA and the standard GA without time constraint,the computational time of the algorithm is less in this paper. And the probability of gaining optimal solution is bigger and the result is better under the condition of multi-constraint. 展开更多
关键词 modern logistics vehicle scheduling routing optimization MULTI-OBJECTIVE multi-constraint biologic immunity information modeling
在线阅读 下载PDF
Particle swarm optimization for train schedule of Y-type train routing in urban rail transit 被引量:2
19
作者 WEI Zi-wen 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第1期87-93,共7页
The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of t... The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly. 展开更多
关键词 urban traffic train schedule particle swarm optimization(PSO) classification learning Y-type train routing
在线阅读 下载PDF
上一页 1 2 237 下一页 到第
使用帮助 返回顶部