The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and ma...The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and machine learning capabilities,has not only expedited the evolution of robotic surgical procedures but also significantly improved diagnostic accuracy and surgical outcomes.展开更多
Dear Editor,Robotic-assisted laparoscopic varicocelectomy(RALV)has been recently described in the pediatric field[1].Although the learning curve of surgical procedures is flattened by a robotic approach[2],complicatio...Dear Editor,Robotic-assisted laparoscopic varicocelectomy(RALV)has been recently described in the pediatric field[1].Although the learning curve of surgical procedures is flattened by a robotic approach[2],complications may occur especially at the beginning of experience.We herein describe an unexpected severe case of parietal blood dripping in a boy who underwent RALV.The study was approved by the institutional review board of Federico Il University Hospital in Naples,Italy(approval number:Fll/2024-PL149).All procedures performed were in accordance with the ethical standards of the institution and/or national research committee.The written informed consent was obtained by his parents to agree the treatment and publish this paper.展开更多
.Introduction The continuous integration of advanced technologies into medicine has brought profound changes across nearly all specialties.In urology,a field traditionally characterized by its reliance on delicate,pre....Introduction The continuous integration of advanced technologies into medicine has brought profound changes across nearly all specialties.In urology,a field traditionally characterized by its reliance on delicate,precision-driven procedures,the impact of innovations such as robotics,artificial intelligence(AI),telepresence,and telesurgery has been transformative.展开更多
Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and langua...Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.展开更多
Objective:This study aimed to assess the feasibility and safety of the SHURUI single-port robotic surgical system for a range of major urological surgeries.Methods:In this prospective,multicenter clinical trial,we exa...Objective:This study aimed to assess the feasibility and safety of the SHURUI single-port robotic surgical system for a range of major urological surgeries.Methods:In this prospective,multicenter clinical trial,we examined the effectiveness of the SHURUI single-port robotic surgical system in urological interventions.The first 50 patients from four centers in China underwent single-port surgeries including partial nephrectomy,radical prostatectomy,partial adrenalectomy,and pyeloureteroplasty,exclusively by the SHURUI single-port robotic surgical system.The study's primary endpoints focused on the success of surgeries,defined as no deviations from planned procedures,no need for more than one port,and no re-operations within 24 h after surgery.Secondary endpoints encompassed a range of surgical metrics,functional outcomes,and patient demographic data.Clinical assessments were conducted before surgery,before discharge,and 1 month after discharge.Results:The surgical procedures were executed successfully without requiring intraoperative conversions or transfusions.Both estimated blood loss and operation durations were maintained within satisfactory limits.For each type of surgery,the mean console times and estimated blood loss were 179.8(standard deviation[SD]39.4)min and 125.6(SD 126.0)mL for radical prostatectomy,126.7(SD 47.8)min and 39.2(SD 54.4)mL for partial nephrectomy,112.6(SD 37.4)min and 20.0(SD 13.2)mL for partial adrenalectomy,and 148.0(SD 18.2)min and 18.0(SD 17.9)mL for pyeloureteroplasty,respectively.Across the cohort,17 patients experienced a total of 25 adverse events,while 10 postoperative complications,all rated as Clavien-Dindo grade I,were encountered by eight patients.All patients had shown recovery or improvement from these events before the end of this trial.Conclusion:The SHURUI single-port robotic surgical system demonstrated feasibility and safety in the performance of major urological surgeries.These initial findings highlight the system's potential,though further research and longer follow-up are required to assess long-term outcomes.展开更多
Objectives Robotic-assisted surgery(RAS)is a minimally invasive technique practiced in multiple specialties.Standard training is essential for the acquisition of RAS skills.The cost of RAS is considered to be high,whi...Objectives Robotic-assisted surgery(RAS)is a minimally invasive technique practiced in multiple specialties.Standard training is essential for the acquisition of RAS skills.The cost of RAS is considered to be high,which makes it a burden for institutes and unaffordable for patients.This systematic literature review(SLR)focused on the various RAS training methods applied in different surgical specialties,as well as the cost elements of RAS,and was to summarize the opportunities and challenges associated with scaling up RAS.Methods An SLR was carried out based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses reporting guidelines.The PubMed,EBSCO,and Scopus databases were searched for reports from January 2018 through January 2024.Full-text reviews and research articles in the English language from Asia-Pacific countries were included.Articles that outlined training and costs associated with RAS were chosen.Results The most common training system is the da Vinci system.The simulation technique,which includes dry-lab,wet-lab,and virtual reality training,was found to be a common and important practice.The cost of RAS encompasses the installation and maintenance costs of the robotic system,the operation theatre rent,personnel cost,surgical instrument and material cost,and other miscellaneous charges.The synthesis of SLR revealed the challenges and opportunities regarding RAS training and cost.Conclusions The results of this SLR will help stakeholders such as decision-makers,influencers,and end users of RAS to understand the significance of training and cost in scaling up RAS from a managerial perspective.For any healthcare innovation to reach a vast population,cost-effectiveness and standard training are crucial.展开更多
There have been nearly 60 years since Thomas Starzl’s first liver transplant.During this period,advancements in medical technology have progressively enabled the adoption of new methods for transplantation.Among thes...There have been nearly 60 years since Thomas Starzl’s first liver transplant.During this period,advancements in medical technology have progressively enabled the adoption of new methods for transplantation.Among these innovations,robotic surgery has emerged in recent decades and is gradually being integrated into transplant medicine.Robotic hepatectomy and liver implantation represent significant advancements in the field of transplant surgery.The precision and minimally invasive nature of robotic surgery offer substantial benefits for both living donors and recipients.In living donors,robotic hepatectomy reduces postoperative pain,minimizes scarring,and accelerates recovery.For liver recipients,robotic liver implantation enhances surgical accuracy,leading to better graft positioning and vascular anastomosis.Robotic systems provide more precise and maneuverable control of instruments,allowing surgeons to perform complex procedures with greater accuracy and reduced risk to patients.This review encompasses publications on minimally invasive donor liver surgery,with a specific focus on robotic liver resection in transplantation,and aims to summarize current knowledge and the development status of robotic surgery in liver transplantation,focusing on liver resection in donors and graft implantation in recipients.展开更多
Introduction:Distal ureteral obstruction has classically been managed by ureteroneocystostomy(UNC).The feasibility and success of robotic primary ureteroureterostomy(UU)for benign obstruction appears promising with se...Introduction:Distal ureteral obstruction has classically been managed by ureteroneocystostomy(UNC).The feasibility and success of robotic primary ureteroureterostomy(UU)for benign obstruction appears promising with several benefits over UNC but is poorly studied.Robotic repair offers superior visualization and precision,allowing for minimal ureteral dissection.Here we report on our experience and short-term outcomes.Materials and Methods:We identified patients who underwent robotic distal ureteroureterostomy for benign distal ureteral obstruction at our institution from 2020–2024.Etiology,stricture length,and post-operative outcomes were recorded.All patients had renal ultrasound(US),diuretic renography,or cross-sectional imaging within 6 months of repair.Results:Seven patients underwent distal UU from 2020–2024,with one case of bilateral repair for a total of 8 anastomoses.Iatrogenic injury from hysterectomy represented 5/8 injuries.The mean time between injury and repair was 3.5 months.All defects were 1–1.5 cm in length.At follow-up imaging,there was no evidence of obstruction in any patient with a median follow-up of 10 months,including diuretic renography in 5 of 7 patients.One patient had mild hydronephrosis on their initial renal US but with normal drainage on subsequent diuretic renography.All patients reported no flank pain at follow-up.Conclusions:Robotic UU is feasible for short,benign distal ureteral obstruction in carefully selected patients.Advantages over traditional UNC include a significantly shorter catheter time,no risk of vesicoureteral reflux,no effect on bladder capacity or function,and the ability to retain the native ureteral orifice.Continued research will elucidate the long-term efficacy of this approach.展开更多
The 2025 World Robot Conference,held in Beijing from August 8 to 12,offered a vivid glimpse into the future of the global robotics industry,where breakthroughs in artificial intelligence(AI)are injecting new momentum ...The 2025 World Robot Conference,held in Beijing from August 8 to 12,offered a vivid glimpse into the future of the global robotics industry,where breakthroughs in artificial intelligence(AI)are injecting new momentum into growth.Drawing ove r 1.3 million attendees.展开更多
BACKGROUND Cardiac myxoma,a benign intracardiac tumor,is traditionally excised via conven-tional sternotomy,which is invasive and associated with longer recovery times.Minimally invasive robotic surgery has emerged as...BACKGROUND Cardiac myxoma,a benign intracardiac tumor,is traditionally excised via conven-tional sternotomy,which is invasive and associated with longer recovery times.Minimally invasive robotic surgery has emerged as a potential alternative,offe-ring reduced trauma and faster recovery.This meta-analysis compares the effi-cacy and safety of robotic surgery vs conventional sternotomy for cardiac myxo-ma excision.We hypothesized that robotic surgery would provide comparable safety outcomes with improved postoperative recovery,such as shorter hospital stays and reduced transfusion rates,despite potentially longer operative times.METHODS A systematic review was performed using EMBASE,OVID,Scopus,PubMed,Cochrane,and ScienceDirect databases to identify studies comparing robotic surgery and sternotomy for cardiac myxoma excision.Continuous outcomes were analyzed using mean differences(MDs),and categorical outcomes with odds ratios(ORs)and 95%confidence intervals(95%CIs).A random-effects model was used to pool data,accounting for study heterogeneity.RESULTS Six studies involving 425 patients(180 robotic,245 conventional)were included.Robotic surgery significantly increased cross-clamp time(MD=12.03 minutes,95%CI:2.14-21.92,P=0.02)and cardiopulmonary bypass time(MD=28.37 minutes,95%CI:11.85-44.89,P=0.001).It reduced hospital stay(MD=-1.86 days,95%CI:-2.45 to-1.27,P<0.00001)and blood transfusion requirements(OR=0.30,95%CI:0.13-0.69,P=0.007).No significant differences were observed in atrial arrhythmia(OR=0.55,95%CI:0.27-1.12)or ventilation time(MD=-1.72 hours,95%CI:-5.27 to 1.83,P=0.34).CONCLUSION Robotic surgery for cardiac myxoma excision prolongs operative times but shortens hospital stays and reduces transfusion needs,suggesting enhanced recovery without compromising safety.展开更多
Objective:To systematically investigate the research status,research hotspots,and developmental trends of robotic techniques in stroke rehabilitation through bibliometric and visualization analysis.Methods:Literature ...Objective:To systematically investigate the research status,research hotspots,and developmental trends of robotic techniques in stroke rehabilitation through bibliometric and visualization analysis.Methods:Literature published in the Web of Science from 2004 to 2024 were screened.VOSviewer,CiteSpace,R Software,Microsoft Office Excel 2021,and“bibliometric.com”were employed to conduct bibliometric analysis and network visualization.Results:A total of 3,704 documents were retrieved.Northwestern University was the most productive institution.Krebs Hermano Igo was the most prolific author.The Journal of NeuroEngineering and Rehabilitation had the highest publication volume.The United States currently holds a leading position in various aspects,including the overall volume of publications,institutional contributions,author output,and funding support.Keywords such as“deep learning”“physical human-robot interaction”“wearable robotics”“mirror therapy”“telerehabilitation”“soft robotics”“augmented reality”“functional near-infrared spectroscopy,”and“impedance control”highlight the current research hotspots and frontiers.Conclusion:Rehabilitation robotics is a field with vigorous growth,progressively advancing toward intelligent,personalized,accessible,and efficient rehabilitation solutions with substantial future potential.展开更多
In complex water environments,search tasks often involve multiple Autonomous Underwater Vehicles(AUVs),and a single centralized control cannot handle the complexity and computational burden of large-scale systems.Targ...In complex water environments,search tasks often involve multiple Autonomous Underwater Vehicles(AUVs),and a single centralized control cannot handle the complexity and computational burden of large-scale systems.Target search in complex water environments has always been a major challenge in the field of underwater robots.To address this problem,this paper proposes a multi-biomimetic robot fish collaborative target search method based on Distributed Model Predictive Control(DMPC).First,we established a bionic robot fish kinematic model and a multi-biomimetic robot fish communication model;second,this paper proposed a distributed model predictive control algorithm based on the distributed search theory framework,so that the bionic robot fish can dynamically adjust their search path according to each other’s position information and search status,avoid repeated coverage or missing areas,and thus improve the search efficiency;third,we conducted simulation experiments based on DMPC,and the results showed that the proposed method has a target search success rate of more than 90%in static targets,dynamic targets,and obstacle environments.Finally,we compared this method with Centralized Model Predictive Control(CMPC)and Random Walk(RW)algorithms.The DMPC approach demonstrates significant advantages,achieving a remarkable target search success rate of 94.17%.These findings comprehensively validate the effectiveness and superiority of the proposed methodology.It can be seen that DMPC can effectively dispatch multiple bionic robot fish to work together to achieve efficient search of vast waters.It can significantly improve the flexibility,scalability,robustness and cooperation efficiency of the system and has broad application prospects.展开更多
1.Introduction Due to the continuous progress in surgical methodologies and the swift evolution of surgical tools,minimally invasive procedures have emerged as the dominant approach in urologic oncology surgeries.Nota...1.Introduction Due to the continuous progress in surgical methodologies and the swift evolution of surgical tools,minimally invasive procedures have emerged as the dominant approach in urologic oncology surgeries.Notably,robot-assisted surgery(RAS)has led to its extensive adoption in the surgical management of urinary system tumors due to its enhanced maneuverability,precision in suturing,and anastomotic capabilities.展开更多
Gastrectomy is the cornerstone of treatment for gastric cancer.Since the introduction of minimally invasive techniques,the main challenge for surgeons has been to achieve the same surgical radicality,adequate lymphade...Gastrectomy is the cornerstone of treatment for gastric cancer.Since the introduction of minimally invasive techniques,the main challenge for surgeons has been to achieve the same surgical radicality,adequate lymphadenectomy,and negative resection margins as with the open approach.Previous Eastern trials showed non-inferiority of laparoscopic gastrectomy,whereas Western trials reported a higher number of complications.This may depend on the different eli-gibility criteria to select patients and surgeons.Currently,the increased availability of robotic systems has led to renewed enthusiasm.We present a critical review of published randomized control trials(up to October 2024)to investigate the real benefits of robotic compared to open and laparoscopic approaches.Robotic gastrectomy has shown similar oncological outcomes in survival and lymph node retrieval,particularly in suprapancreatic stations,with the advantage of a more acceptable rate of pancreatic fistula and feasible anastomotic reconstruction.Some clinical situations,such as postchemotherapy interstitial fibrosis and distortion of anatomical planes,may increase the technical difficulty.Only four published trials assessed the implications of a pre-operative therapy,with no robotic surgery cases.Robotic systems may reduce intraop-erative blood loss,the risk of conversion and allow more extensive lymphadenec-tomies in cancers with a high risk of extraperigastric metastases,or with clinically proven para-aortic node metastases,although clinical trials evaluating robotic gastrectomy after neoadjuvant therapy have not yet been published.展开更多
The integration of 3D-printed hydrogels in soft robotics enables the creation of flexible,adaptable,and biocompatible systems.Hydrogels,with their high-water content and responsiveness to stimuli,are suitable for actu...The integration of 3D-printed hydrogels in soft robotics enables the creation of flexible,adaptable,and biocompatible systems.Hydrogels,with their high-water content and responsiveness to stimuli,are suitable for actuators,sensors,and robotic systems that require safe interaction and precise manipulation.Unlike traditional techniques,3D printing offers enhanced capabilities in tailoring structural complexity,resolution,and integrated functionality,enabling the direct fabrication of hydrogel systems with programmed mechanical and functional properties.In this perspective,we explore the evolving role of 3D-printed hydrogels in soft robotics,covering their material composition,fabrication techniques,and diverse applications.We highlight advancements in hydrogel-based actuators,sensors,and robots,emphasizing their ability to perform intricate motions.In addition,we discuss challenges like mechanical robustness,scalability,and integration as well as the potential of hydrogels in soft robotics and explore future directions for their development.展开更多
The machining precision of blades is critical to the service performance of aero engines.The Leading Edge(LE) of high-pressure compressor blades poses a challenge for precision machining due to its thin size, high deg...The machining precision of blades is critical to the service performance of aero engines.The Leading Edge(LE) of high-pressure compressor blades poses a challenge for precision machining due to its thin size, high degree of bending, and significant change of curvature. Aimed at optimizing the machining error, this paper presents a framework that integrates toolpath planning and process parameter regulation. Firstly, an Iterative Subdivision Algorithm(ISA) for clamped Bspline curve is proposed, based on which toolpath planning method towards the LE is developed.Secondly, the removal effect of Cutter Contact(CC) point on the sampling points is investigated in the calculation of grinding dwell time by traversing in u-v space. A global material removal model is constructed for the solution. Thirdly, the previous two steps are interconnected based on the Improved Whale Optimization Algorithm(IWOA), and the optimal parameter combination is searched using the Root Mean Square Error(RMSE) of the machining error as the objective function. Based on this, the off-line programming and robotic grinding experiments are carried out. The experimental results show that the proposed method with error optimization can achieve 0.0143 mm mean value and 0.0160 mm standard deviations of LE surface error, which is an improvement of32.5% and 33.9%, respectively, compared with previous method.展开更多
Human-robot safety is an important topic in wearable robotics,especially in supernumerary robotic limbs(SRLs).The proposal of flexible joint improves human-robot safety strategy,which allows physical contact between h...Human-robot safety is an important topic in wearable robotics,especially in supernumerary robotic limbs(SRLs).The proposal of flexible joint improves human-robot safety strategy,which allows physical contact between human and robots,rather than strictly limiting the human-robot motion.However,most researchers focus on the variable stiffness features of flexible joints,but few evaluate the performance of the flexible joint in the human-robot collision.Therefore,the performance of two typical flexible joints,including the series elastic joint(SEJ)and the passive variable stiffness joint(PVSJ),are compared through dynamic collision experiments.The results demonstrate that the SEJ absorbs 40.7%-58.7%of the collision force and 34.2%-45.2%of the collision torque in the driven-torque below 4 N·m and driven-speed of 3-7(°)/s,which is more stable than PVSJ.In addition,the stiffness error of SEJ is measured at 5.1%,significantly lower than the 23.04%measured in the PVSJ.The huge stiffness error of PVSJ leads to its unreliability in buffering collision.Furthermore,we analyze results and confirm that SEJ has a more stable human-robot safety performance in buffering dynamic collision.Consequently,the SEJ is suitable in SRLs for human-robot safety in our scenario.展开更多
Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap fr...Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements.展开更多
This study investigates chaotic synchronization via field-coupled nonlinear circuits, achieving both electrical synchronization and energy balance. The driving mechanism biomimetically parallels neuromuscular signal t...This study investigates chaotic synchronization via field-coupled nonlinear circuits, achieving both electrical synchronization and energy balance. The driving mechanism biomimetically parallels neuromuscular signal transduction, where synchronized neuronal firing induces coordinated muscle contractions that produce macroscopic movement. We implement a Chua circuit-driven robotic arm with tunable periodic/chaotic oscillations through parameter modulation and external current injection. Bifurcation analysis maps oscillation modes under varying external stimuli. Inductive coupling between two systems with distinct initial conditions facilitates magnetic energy transfer, optimized by an energy balance criterion. A bio-inspired exponential gain method dynamically regulates the coupling strength to optimize the energy transfer efficiency.The effects of ambient electromagnetic noise on synchronization are systematically quantified. The results indicate electrically modulatable robotic arm dynamics, with the coupled systems achieving autonomous rapid synchronization. Despite noise-induced desynchronization, inter-system errors rapidly decay and stabilize within bounded limits, confirming robust stability.展开更多
This paper proposes the Leg Dimensional Synergistic Optimization Strategy(LDSOS)for humanoid robotic legs based on mechanism decoupling and performance assignment.The proposed method addresses the interdependent effec...This paper proposes the Leg Dimensional Synergistic Optimization Strategy(LDSOS)for humanoid robotic legs based on mechanism decoupling and performance assignment.The proposed method addresses the interdependent effects of dimensional parameters on the local and whole mechanisms in the design of hybrid humanoid robotic legs.It sequentially optimizes the dimensional parameters of the local and whole mechanism,thereby balancing the motion performance requirements of both.Additionally,it considers the assignment of efficient performance resources between the Local Functional Workspace(LFW)and the Whole Available Workspace(WAW).To facilitate the modeling and optimization process,a local/whole Equivalent Configuration Framework(ECF)is introduced.By decoupling the hybrid mechanism into a whole mechanism and multiple local mechanisms,the ECF enhances the efficiency of design,modeling,and performance evaluation.Prototype experiments are conducted to validate the effectiveness of LDSOS.This research provides an effective configuration framework for humanoid robotic leg design,establishing a theoretical and practical foundation for future optimized designs of humanoid robotic legs and pioneering novel approaches to the design of complex hybrid humanoid robotic legs.展开更多
文摘The integration of artificial intelligence(AI)into the realm of robotic urologic surgery represents a remarkable paradigm shift in the field of urology and surgical healthcare.AI,with its advanced data analysis and machine learning capabilities,has not only expedited the evolution of robotic surgical procedures but also significantly improved diagnostic accuracy and surgical outcomes.
文摘Dear Editor,Robotic-assisted laparoscopic varicocelectomy(RALV)has been recently described in the pediatric field[1].Although the learning curve of surgical procedures is flattened by a robotic approach[2],complications may occur especially at the beginning of experience.We herein describe an unexpected severe case of parietal blood dripping in a boy who underwent RALV.The study was approved by the institutional review board of Federico Il University Hospital in Naples,Italy(approval number:Fll/2024-PL149).All procedures performed were in accordance with the ethical standards of the institution and/or national research committee.The written informed consent was obtained by his parents to agree the treatment and publish this paper.
文摘.Introduction The continuous integration of advanced technologies into medicine has brought profound changes across nearly all specialties.In urology,a field traditionally characterized by its reliance on delicate,precision-driven procedures,the impact of innovations such as robotics,artificial intelligence(AI),telepresence,and telesurgery has been transformative.
基金supported by National Natural Science Foundation of China(62376219 and 62006194)Foundational Research Project in Specialized Discipline(Grant No.G2024WD0146)Faculty Construction Project(Grant No.24GH0201148).
文摘Large language models(LLMs)have undergone significant expansion and have been increasingly integrated across various domains.Notably,in the realm of robot task planning,LLMs harness their advanced reasoning and language comprehension capabilities to formulate precise and efficient action plans based on natural language instructions.However,for embodied tasks,where robots interact with complex environments,textonly LLMs often face challenges due to a lack of compatibility with robotic visual perception.This study provides a comprehensive overview of the emerging integration of LLMs and multimodal LLMs into various robotic tasks.Additionally,we propose a framework that utilizes multimodal GPT-4V to enhance embodied task planning through the combination of natural language instructions and robot visual perceptions.Our results,based on diverse datasets,indicate that GPT-4V effectively enhances robot performance in embodied tasks.This extensive survey and evaluation of LLMs and multimodal LLMs across a variety of robotic tasks enriches the understanding of LLM-centric embodied intelligence and provides forward-looking insights towards bridging the gap in Human-Robot-Environment interaction.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFB4700904 to Wang L)the Shanghai Shenkang Hospital Development Center's project for the Promotion of Clinical Skills and Clinical Innovation Three-Year Action Plan(Project No.SHDC2022CRT006 to Wang L and SHDC2022CRS010B to Tang S).
文摘Objective:This study aimed to assess the feasibility and safety of the SHURUI single-port robotic surgical system for a range of major urological surgeries.Methods:In this prospective,multicenter clinical trial,we examined the effectiveness of the SHURUI single-port robotic surgical system in urological interventions.The first 50 patients from four centers in China underwent single-port surgeries including partial nephrectomy,radical prostatectomy,partial adrenalectomy,and pyeloureteroplasty,exclusively by the SHURUI single-port robotic surgical system.The study's primary endpoints focused on the success of surgeries,defined as no deviations from planned procedures,no need for more than one port,and no re-operations within 24 h after surgery.Secondary endpoints encompassed a range of surgical metrics,functional outcomes,and patient demographic data.Clinical assessments were conducted before surgery,before discharge,and 1 month after discharge.Results:The surgical procedures were executed successfully without requiring intraoperative conversions or transfusions.Both estimated blood loss and operation durations were maintained within satisfactory limits.For each type of surgery,the mean console times and estimated blood loss were 179.8(standard deviation[SD]39.4)min and 125.6(SD 126.0)mL for radical prostatectomy,126.7(SD 47.8)min and 39.2(SD 54.4)mL for partial nephrectomy,112.6(SD 37.4)min and 20.0(SD 13.2)mL for partial adrenalectomy,and 148.0(SD 18.2)min and 18.0(SD 17.9)mL for pyeloureteroplasty,respectively.Across the cohort,17 patients experienced a total of 25 adverse events,while 10 postoperative complications,all rated as Clavien-Dindo grade I,were encountered by eight patients.All patients had shown recovery or improvement from these events before the end of this trial.Conclusion:The SHURUI single-port robotic surgical system demonstrated feasibility and safety in the performance of major urological surgeries.These initial findings highlight the system's potential,though further research and longer follow-up are required to assess long-term outcomes.
基金The authors are the awardees of the Indian Council of Social Science Research(ICSSR)Research Program(F.No.G-11/2021-22/ICSSR/RP)This paper is largely an outcome of the research program sponsored by the ICSSR.However,the responsibility for the facts stated,opinions expressed,and conclusions drawn is entirely that of the authors.
文摘Objectives Robotic-assisted surgery(RAS)is a minimally invasive technique practiced in multiple specialties.Standard training is essential for the acquisition of RAS skills.The cost of RAS is considered to be high,which makes it a burden for institutes and unaffordable for patients.This systematic literature review(SLR)focused on the various RAS training methods applied in different surgical specialties,as well as the cost elements of RAS,and was to summarize the opportunities and challenges associated with scaling up RAS.Methods An SLR was carried out based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses reporting guidelines.The PubMed,EBSCO,and Scopus databases were searched for reports from January 2018 through January 2024.Full-text reviews and research articles in the English language from Asia-Pacific countries were included.Articles that outlined training and costs associated with RAS were chosen.Results The most common training system is the da Vinci system.The simulation technique,which includes dry-lab,wet-lab,and virtual reality training,was found to be a common and important practice.The cost of RAS encompasses the installation and maintenance costs of the robotic system,the operation theatre rent,personnel cost,surgical instrument and material cost,and other miscellaneous charges.The synthesis of SLR revealed the challenges and opportunities regarding RAS training and cost.Conclusions The results of this SLR will help stakeholders such as decision-makers,influencers,and end users of RAS to understand the significance of training and cost in scaling up RAS from a managerial perspective.For any healthcare innovation to reach a vast population,cost-effectiveness and standard training are crucial.
文摘There have been nearly 60 years since Thomas Starzl’s first liver transplant.During this period,advancements in medical technology have progressively enabled the adoption of new methods for transplantation.Among these innovations,robotic surgery has emerged in recent decades and is gradually being integrated into transplant medicine.Robotic hepatectomy and liver implantation represent significant advancements in the field of transplant surgery.The precision and minimally invasive nature of robotic surgery offer substantial benefits for both living donors and recipients.In living donors,robotic hepatectomy reduces postoperative pain,minimizes scarring,and accelerates recovery.For liver recipients,robotic liver implantation enhances surgical accuracy,leading to better graft positioning and vascular anastomosis.Robotic systems provide more precise and maneuverable control of instruments,allowing surgeons to perform complex procedures with greater accuracy and reduced risk to patients.This review encompasses publications on minimally invasive donor liver surgery,with a specific focus on robotic liver resection in transplantation,and aims to summarize current knowledge and the development status of robotic surgery in liver transplantation,focusing on liver resection in donors and graft implantation in recipients.
文摘Introduction:Distal ureteral obstruction has classically been managed by ureteroneocystostomy(UNC).The feasibility and success of robotic primary ureteroureterostomy(UU)for benign obstruction appears promising with several benefits over UNC but is poorly studied.Robotic repair offers superior visualization and precision,allowing for minimal ureteral dissection.Here we report on our experience and short-term outcomes.Materials and Methods:We identified patients who underwent robotic distal ureteroureterostomy for benign distal ureteral obstruction at our institution from 2020–2024.Etiology,stricture length,and post-operative outcomes were recorded.All patients had renal ultrasound(US),diuretic renography,or cross-sectional imaging within 6 months of repair.Results:Seven patients underwent distal UU from 2020–2024,with one case of bilateral repair for a total of 8 anastomoses.Iatrogenic injury from hysterectomy represented 5/8 injuries.The mean time between injury and repair was 3.5 months.All defects were 1–1.5 cm in length.At follow-up imaging,there was no evidence of obstruction in any patient with a median follow-up of 10 months,including diuretic renography in 5 of 7 patients.One patient had mild hydronephrosis on their initial renal US but with normal drainage on subsequent diuretic renography.All patients reported no flank pain at follow-up.Conclusions:Robotic UU is feasible for short,benign distal ureteral obstruction in carefully selected patients.Advantages over traditional UNC include a significantly shorter catheter time,no risk of vesicoureteral reflux,no effect on bladder capacity or function,and the ability to retain the native ureteral orifice.Continued research will elucidate the long-term efficacy of this approach.
文摘The 2025 World Robot Conference,held in Beijing from August 8 to 12,offered a vivid glimpse into the future of the global robotics industry,where breakthroughs in artificial intelligence(AI)are injecting new momentum into growth.Drawing ove r 1.3 million attendees.
文摘BACKGROUND Cardiac myxoma,a benign intracardiac tumor,is traditionally excised via conven-tional sternotomy,which is invasive and associated with longer recovery times.Minimally invasive robotic surgery has emerged as a potential alternative,offe-ring reduced trauma and faster recovery.This meta-analysis compares the effi-cacy and safety of robotic surgery vs conventional sternotomy for cardiac myxo-ma excision.We hypothesized that robotic surgery would provide comparable safety outcomes with improved postoperative recovery,such as shorter hospital stays and reduced transfusion rates,despite potentially longer operative times.METHODS A systematic review was performed using EMBASE,OVID,Scopus,PubMed,Cochrane,and ScienceDirect databases to identify studies comparing robotic surgery and sternotomy for cardiac myxoma excision.Continuous outcomes were analyzed using mean differences(MDs),and categorical outcomes with odds ratios(ORs)and 95%confidence intervals(95%CIs).A random-effects model was used to pool data,accounting for study heterogeneity.RESULTS Six studies involving 425 patients(180 robotic,245 conventional)were included.Robotic surgery significantly increased cross-clamp time(MD=12.03 minutes,95%CI:2.14-21.92,P=0.02)and cardiopulmonary bypass time(MD=28.37 minutes,95%CI:11.85-44.89,P=0.001).It reduced hospital stay(MD=-1.86 days,95%CI:-2.45 to-1.27,P<0.00001)and blood transfusion requirements(OR=0.30,95%CI:0.13-0.69,P=0.007).No significant differences were observed in atrial arrhythmia(OR=0.55,95%CI:0.27-1.12)or ventilation time(MD=-1.72 hours,95%CI:-5.27 to 1.83,P=0.34).CONCLUSION Robotic surgery for cardiac myxoma excision prolongs operative times but shortens hospital stays and reduces transfusion needs,suggesting enhanced recovery without compromising safety.
文摘Objective:To systematically investigate the research status,research hotspots,and developmental trends of robotic techniques in stroke rehabilitation through bibliometric and visualization analysis.Methods:Literature published in the Web of Science from 2004 to 2024 were screened.VOSviewer,CiteSpace,R Software,Microsoft Office Excel 2021,and“bibliometric.com”were employed to conduct bibliometric analysis and network visualization.Results:A total of 3,704 documents were retrieved.Northwestern University was the most productive institution.Krebs Hermano Igo was the most prolific author.The Journal of NeuroEngineering and Rehabilitation had the highest publication volume.The United States currently holds a leading position in various aspects,including the overall volume of publications,institutional contributions,author output,and funding support.Keywords such as“deep learning”“physical human-robot interaction”“wearable robotics”“mirror therapy”“telerehabilitation”“soft robotics”“augmented reality”“functional near-infrared spectroscopy,”and“impedance control”highlight the current research hotspots and frontiers.Conclusion:Rehabilitation robotics is a field with vigorous growth,progressively advancing toward intelligent,personalized,accessible,and efficient rehabilitation solutions with substantial future potential.
基金funded by National Natural Science Foundation of China(Nos.62473236,62073196).
文摘In complex water environments,search tasks often involve multiple Autonomous Underwater Vehicles(AUVs),and a single centralized control cannot handle the complexity and computational burden of large-scale systems.Target search in complex water environments has always been a major challenge in the field of underwater robots.To address this problem,this paper proposes a multi-biomimetic robot fish collaborative target search method based on Distributed Model Predictive Control(DMPC).First,we established a bionic robot fish kinematic model and a multi-biomimetic robot fish communication model;second,this paper proposed a distributed model predictive control algorithm based on the distributed search theory framework,so that the bionic robot fish can dynamically adjust their search path according to each other’s position information and search status,avoid repeated coverage or missing areas,and thus improve the search efficiency;third,we conducted simulation experiments based on DMPC,and the results showed that the proposed method has a target search success rate of more than 90%in static targets,dynamic targets,and obstacle environments.Finally,we compared this method with Centralized Model Predictive Control(CMPC)and Random Walk(RW)algorithms.The DMPC approach demonstrates significant advantages,achieving a remarkable target search success rate of 94.17%.These findings comprehensively validate the effectiveness and superiority of the proposed methodology.It can be seen that DMPC can effectively dispatch multiple bionic robot fish to work together to achieve efficient search of vast waters.It can significantly improve the flexibility,scalability,robustness and cooperation efficiency of the system and has broad application prospects.
基金supported by grants from the National Natural Science Foundation of China(No.82172741 to Ye D)Shanghai Municipal Health Bureau(No.2020CXJQ03 to Ye D)Xuhui District Hospital Local Cooperation Project(No.23XHYD-14 to Ye D).
文摘1.Introduction Due to the continuous progress in surgical methodologies and the swift evolution of surgical tools,minimally invasive procedures have emerged as the dominant approach in urologic oncology surgeries.Notably,robot-assisted surgery(RAS)has led to its extensive adoption in the surgical management of urinary system tumors due to its enhanced maneuverability,precision in suturing,and anastomotic capabilities.
文摘Gastrectomy is the cornerstone of treatment for gastric cancer.Since the introduction of minimally invasive techniques,the main challenge for surgeons has been to achieve the same surgical radicality,adequate lymphadenectomy,and negative resection margins as with the open approach.Previous Eastern trials showed non-inferiority of laparoscopic gastrectomy,whereas Western trials reported a higher number of complications.This may depend on the different eli-gibility criteria to select patients and surgeons.Currently,the increased availability of robotic systems has led to renewed enthusiasm.We present a critical review of published randomized control trials(up to October 2024)to investigate the real benefits of robotic compared to open and laparoscopic approaches.Robotic gastrectomy has shown similar oncological outcomes in survival and lymph node retrieval,particularly in suprapancreatic stations,with the advantage of a more acceptable rate of pancreatic fistula and feasible anastomotic reconstruction.Some clinical situations,such as postchemotherapy interstitial fibrosis and distortion of anatomical planes,may increase the technical difficulty.Only four published trials assessed the implications of a pre-operative therapy,with no robotic surgery cases.Robotic systems may reduce intraop-erative blood loss,the risk of conversion and allow more extensive lymphadenec-tomies in cancers with a high risk of extraperigastric metastases,or with clinically proven para-aortic node metastases,although clinical trials evaluating robotic gastrectomy after neoadjuvant therapy have not yet been published.
基金supported by Singapore MOE Tier-2 Award MOE-T2EP50123-0015.
文摘The integration of 3D-printed hydrogels in soft robotics enables the creation of flexible,adaptable,and biocompatible systems.Hydrogels,with their high-water content and responsiveness to stimuli,are suitable for actuators,sensors,and robotic systems that require safe interaction and precise manipulation.Unlike traditional techniques,3D printing offers enhanced capabilities in tailoring structural complexity,resolution,and integrated functionality,enabling the direct fabrication of hydrogel systems with programmed mechanical and functional properties.In this perspective,we explore the evolving role of 3D-printed hydrogels in soft robotics,covering their material composition,fabrication techniques,and diverse applications.We highlight advancements in hydrogel-based actuators,sensors,and robots,emphasizing their ability to perform intricate motions.In addition,we discuss challenges like mechanical robustness,scalability,and integration as well as the potential of hydrogels in soft robotics and explore future directions for their development.
基金supported by the National Natural Science Foundation of China (No. 52075059)Graduate Scientific Research and Innovation Foundation of Chongqing (No. CYB23021)the Innovation Fund of Aero Engine Corporation of China (No. ZZCX-2022-019)。
文摘The machining precision of blades is critical to the service performance of aero engines.The Leading Edge(LE) of high-pressure compressor blades poses a challenge for precision machining due to its thin size, high degree of bending, and significant change of curvature. Aimed at optimizing the machining error, this paper presents a framework that integrates toolpath planning and process parameter regulation. Firstly, an Iterative Subdivision Algorithm(ISA) for clamped Bspline curve is proposed, based on which toolpath planning method towards the LE is developed.Secondly, the removal effect of Cutter Contact(CC) point on the sampling points is investigated in the calculation of grinding dwell time by traversing in u-v space. A global material removal model is constructed for the solution. Thirdly, the previous two steps are interconnected based on the Improved Whale Optimization Algorithm(IWOA), and the optimal parameter combination is searched using the Root Mean Square Error(RMSE) of the machining error as the objective function. Based on this, the off-line programming and robotic grinding experiments are carried out. The experimental results show that the proposed method with error optimization can achieve 0.0143 mm mean value and 0.0160 mm standard deviations of LE surface error, which is an improvement of32.5% and 33.9%, respectively, compared with previous method.
基金supported by the Na⁃tional Natural Science Foundation of China(No.U22A20204)the Innovation Foundation from National Clinical Research Center for Orthopedics,Sports Medicine&Rehabilitation Foundation(No.23-NCRC-CXJJ-ZD3-8)。
文摘Human-robot safety is an important topic in wearable robotics,especially in supernumerary robotic limbs(SRLs).The proposal of flexible joint improves human-robot safety strategy,which allows physical contact between human and robots,rather than strictly limiting the human-robot motion.However,most researchers focus on the variable stiffness features of flexible joints,but few evaluate the performance of the flexible joint in the human-robot collision.Therefore,the performance of two typical flexible joints,including the series elastic joint(SEJ)and the passive variable stiffness joint(PVSJ),are compared through dynamic collision experiments.The results demonstrate that the SEJ absorbs 40.7%-58.7%of the collision force and 34.2%-45.2%of the collision torque in the driven-torque below 4 N·m and driven-speed of 3-7(°)/s,which is more stable than PVSJ.In addition,the stiffness error of SEJ is measured at 5.1%,significantly lower than the 23.04%measured in the PVSJ.The huge stiffness error of PVSJ leads to its unreliability in buffering collision.Furthermore,we analyze results and confirm that SEJ has a more stable human-robot safety performance in buffering dynamic collision.Consequently,the SEJ is suitable in SRLs for human-robot safety in our scenario.
基金supported in part by NSFC under Grant 62422407in part by RGC under Grant 26204424in part by ACCESS–AI Chip Center for Emerging Smart Systems, sponsored by the Inno HK initiative of the Innovation and Technology Commission of the Hong Kong Special Administrative Region Government
文摘Robotic computing systems play an important role in enabling intelligent robotic tasks through intelligent algo-rithms and supporting hardware.In recent years,the evolution of robotic algorithms indicates a roadmap from traditional robotics to hierarchical and end-to-end models.This algorithmic advancement poses a critical challenge in achieving balanced system-wide performance.Therefore,algorithm-hardware co-design has emerged as the primary methodology,which ana-lyzes algorithm behaviors on hardware to identify common computational properties.These properties can motivate algo-rithm optimization to reduce computational complexity and hardware innovation from architecture to circuit for high performance and high energy efficiency.We then reviewed recent works on robotic and embodied AI algorithms and computing hard-ware to demonstrate this algorithm-hardware co-design methodology.In the end,we discuss future research opportunities by answering two questions:(1)how to adapt the computing platforms to the rapid evolution of embodied AI algorithms,and(2)how to transform the potential of emerging hardware innovations into end-to-end inference improvements.
基金Project supported by the National Key R&D Program of China (Grant No. 2023YFD2000601-02)。
文摘This study investigates chaotic synchronization via field-coupled nonlinear circuits, achieving both electrical synchronization and energy balance. The driving mechanism biomimetically parallels neuromuscular signal transduction, where synchronized neuronal firing induces coordinated muscle contractions that produce macroscopic movement. We implement a Chua circuit-driven robotic arm with tunable periodic/chaotic oscillations through parameter modulation and external current injection. Bifurcation analysis maps oscillation modes under varying external stimuli. Inductive coupling between two systems with distinct initial conditions facilitates magnetic energy transfer, optimized by an energy balance criterion. A bio-inspired exponential gain method dynamically regulates the coupling strength to optimize the energy transfer efficiency.The effects of ambient electromagnetic noise on synchronization are systematically quantified. The results indicate electrically modulatable robotic arm dynamics, with the coupled systems achieving autonomous rapid synchronization. Despite noise-induced desynchronization, inter-system errors rapidly decay and stabilize within bounded limits, confirming robust stability.
文摘This paper proposes the Leg Dimensional Synergistic Optimization Strategy(LDSOS)for humanoid robotic legs based on mechanism decoupling and performance assignment.The proposed method addresses the interdependent effects of dimensional parameters on the local and whole mechanisms in the design of hybrid humanoid robotic legs.It sequentially optimizes the dimensional parameters of the local and whole mechanism,thereby balancing the motion performance requirements of both.Additionally,it considers the assignment of efficient performance resources between the Local Functional Workspace(LFW)and the Whole Available Workspace(WAW).To facilitate the modeling and optimization process,a local/whole Equivalent Configuration Framework(ECF)is introduced.By decoupling the hybrid mechanism into a whole mechanism and multiple local mechanisms,the ECF enhances the efficiency of design,modeling,and performance evaluation.Prototype experiments are conducted to validate the effectiveness of LDSOS.This research provides an effective configuration framework for humanoid robotic leg design,establishing a theoretical and practical foundation for future optimized designs of humanoid robotic legs and pioneering novel approaches to the design of complex hybrid humanoid robotic legs.