This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The con...This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The concept of recoverable functional design and its application prospects were elaborated,and finally,the research on the impact resistance performance of prestressed segmental precast and assembled pierswas discussed.Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers.At the same time,the introduction of the concept of recoverable functionality provides new ideas for the rapid repair and functional recovery of bridge piers,which helps to improve the recovery efficiency of bridges after extreme events.Future research should focus on the evaluation methods of impact resistance performance,new connection technologies,in-depth application of recoverable functional design,a combination of impact simulation experiments and numerical analysis,and exploration of comprehensive disaster prevention and reduction strategies.These research results will also promote the further development and innovation of prefabricated assembly technology in bridge engineering,bringing new ideas and methods to the field of engineering construction.展开更多
The utilization of reclaimed asphalt pavement(RAP)in asphalt mixtures has gained momentum in recent years,yet concerns persist regarding the long-term performance and binder properties of high RAP content mixtures.To ...The utilization of reclaimed asphalt pavement(RAP)in asphalt mixtures has gained momentum in recent years,yet concerns persist regarding the long-term performance and binder properties of high RAP content mixtures.To overcome these challenges,rejuvenators have emerged as a promising solution to enhance the properties of aged asphalt binders and improve the overall performance of asphalt mixtures.This paper provides a comprehensive state-of-the-art review of rejuvenator technology and its potential to enhance the performance and sustainability of asphalt pavements.Rejuvenators are additives used to restore the properties of aged asphalt binders,particularly when incorporating high percentages of RAP.The performance of these additives varies based on their origin,and different methods can be used to analyze the rejuvenation process.Since proper specifications for rejuvenators are not available,blending charts are used to determine the optimum dosage of rejuvenators.However,proper blending must be achieved to maximize results and reduce the effect of black rock.Laboratory tests and some field performance studies on rejuvenated aged asphalt binders and RAP mixtures have shown improved or similar performance compared to virgin materials.Additionally,the use of rejuvenators has been observed to reduce construction costs,suggesting that this is a cost-effective technology for asphalt pavements.While rejuvenators show promise in improving the performance of pavements with recycled materials,challenges remain regarding optimization,long-term durability,and environmental effects.This review paper also identifies key areas for future research,including life-cycle cost analyses,comprehensive environmental impact assessments,and long-term field performance monitoring.展开更多
Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability...Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability. Even without apparent inflammation, injury sites are associated with increased inflammatory markers. This review focuses on how it might be possible to reduce neuropathic pain by reducing inflammation. Physiologically, pain is resolved by a combination of the out-migration of pro-inflammatory cells from the injury site, the down-regulation of the genes underlying the inflammation, up-regulating genes for anti-inflammatory mediators, and reducing nociceptive neuron hyperexcitability. While various techniques reduce chronic neuropathic pain, the best are effective on < 50% of patients, no technique reliably or permanently eliminates neuropathic pain. This is because most techniques are predominantly aimed at reducing pain, not inflammation. In addition, while single factors reduce pain, increasing evidence indicates significant and longer-lasting pain relief requires multiple factors acting simultaneously. Therefore, it is not surprising that extensive data indicate that the application of platelet-rich plasma provides more significant and longer-lasting pain suppression than other techniques, although its analgesia is neither complete nor permanent. However, several case reports indicate that platelet-rich plasma can induce permanent neuropathic pain elimination when the platelet concentration is significantly increased and is applied to longer nerve lengths. This review examines the primary triggers of the development and maintenance of neuropathic pain and techniques that reduce chronic neuropathic pain. The application of plateletrich plasma holds great promise for providing complete and permanent chronic neuropathic pain elimination.展开更多
Spinal cord injury(SCI)is a debilitating condition that affects more than 2.5 million individuals worldwide(Thuret et al.,2006).In addition to its devastating effects on the individual,this disease is a heavy burd...Spinal cord injury(SCI)is a debilitating condition that affects more than 2.5 million individuals worldwide(Thuret et al.,2006).In addition to its devastating effects on the individual,this disease is a heavy burden to the society in terms of health care costs, which are estimated in billions of dollars annually in most developed countries (Cadotte and Fehlings, 2011).展开更多
The inferior alveolar nerve and facial nerve are the two most important nerves in the dental and maxillofacial region.The injury to them is one of the major postoperative complications after alveolar surgery and ortho...The inferior alveolar nerve and facial nerve are the two most important nerves in the dental and maxillofacial region.The injury to them is one of the major postoperative complications after alveolar surgery and orthognathic surgery.However,recovering the nerve function after injury takes a long time and the recovery effect tends to be unsatisfactory.In recent years,an intensively investigated technique,low level laser which has been applying in assisting the recovery of nerve function,has been gradually proved to be effective in clinically treating postoperative nerve injury.In this article we review in terms of the mechanisms involved in low level laser-assisted functional restoration of nerve injury and its clinical application in the recovery of nerve function in the dental and maxillofacial area as well.展开更多
Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for th...Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.展开更多
Restoring P53's autonomous anti-cancer function through P53 mRNA delivery is a promising anti-tumor strategy.Yet,in tumors harboring mutant P53,the existing mutant P53(Mutp53)would interferes with the anti-tumor f...Restoring P53's autonomous anti-cancer function through P53 mRNA delivery is a promising anti-tumor strategy.Yet,in tumors harboring mutant P53,the existing mutant P53(Mutp53)would interferes with the anti-tumor function of Wtp53 through dominant-negative effect.Herein,we designed Vir-Z@R,a P53-repair nanosystem based on a virus-mimicking nanostructure to deliver P53 mRNA and Zn(Ⅱ)into tumor cells.By supplementing Wtp53 through P53 mRNA delivery and promoting the degradation of mutant P53 via a zinc ion-mediated proteasomal pathway,Vir-Z@R restores the autonomous tumor-suppressive function of P53 and induce tumor cell death through multiple mechanisms(interfering with energy metabolism and inducing apoptosis),leading to delayed tumor growth and prolonged survival in mice with Mutp53.This study provides a strategy for treatment of P53-mutant tumor.展开更多
The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscilla...The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.展开更多
Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used t...Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve phys- ical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfactory. In this regard, we envision that these two methods can be combined and lead to shared understanding for achieving improved nerve repair. In this study, the right tibial nerve was transected 1 cm above the knee to establish a rat tibial nerve injury model. The incision was directly sutured after nerve transection. The anastomotic stoma was coated with 0.5 × 0.5 cm^2 chitosan sheets with betamethasone dipropionate. At 12 weeks after injury, compared with the con- trol and poly (D, L-lactic acid) groups, chitosan-betamethasone dipropionate film slowly degraded with the shape of the membrane still intact. Further, scar hyperplasia and the degree of adhesion at anastomotic stoma were obviously reduced, while the regenerated nerve fiber structure was complete and arranged in a good order in model rats. Electrophysiological study showed enhanced compound muscle action potential. Our results confirm that chitosan-betamethasone dipropionate film can effectively prevent local scar hyperplasia after tibial nerve repair and promote nerve regeneration.展开更多
Visual prostheses are now entering the clinical marketplace. Such prostheses were originally targeted for patients suff ering from blindness through retinitis pigmentosa(RP). However, in late July of this year, for th...Visual prostheses are now entering the clinical marketplace. Such prostheses were originally targeted for patients suff ering from blindness through retinitis pigmentosa(RP). However, in late July of this year, for the first time a patient was given a retinal implant in order to treat dry agerelated macular degeneration. Retinal implants are suitable solutions for diseases that attack photoreceptors but spare most of the remaining retinal neurons. For eye diseases that result in loss of retinal output, implants that interface with more central structures in the visual system are needed. The standard site for central visual prostheses under development is the visual cortex. This perspective discusses the technical and socioeconomic challenges faced by visual prostheses.展开更多
Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no s...Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement.展开更多
Restoring function to peripheral nerves with a gap is challenging,with<50%of patients undergoing nerve repair surgery recovering function.Sensory nerve grafts(autografts)are the clinical“gold standard”for bridgin...Restoring function to peripheral nerves with a gap is challenging,with<50%of patients undergoing nerve repair surgery recovering function.Sensory nerve grafts(autografts)are the clinical“gold standard”for bridging nerve gaps to restore sensory and motor function.They have significant limitations and restore meaningful function only across short gaps when repairs are performed soon after trauma and patients are young.When the value of any of these variables is large,the extent of recovery decreases precipitously,and when two or all are simultaneously large,there is little to no recovery.The extent of restored meaningful recovery has not increased in almost 70 years.Thus,novel techniques are needed that enhance both the extent of recovery and the percentage of patients who recover meaningful recovery.This paper reviews the limitations of autografts and other materials used to repair nerves.It also examines autologous platelet-rich plasma(PRP),a promising nerve gap repair technique that induces recovery in clinical settings where autografts are ineffective,including when the values of all three variables are simultaneously large.展开更多
Patients with extensive and deep skin defects treated with dermal scaffolds usually emphasize the importance of rapid angiogenesis,while overlook the crucial role of skin nerves in regenerative repair.Insufficient ear...Patients with extensive and deep skin defects treated with dermal scaffolds usually emphasize the importance of rapid angiogenesis,while overlook the crucial role of skin nerves in regenerative repair.Insufficient early nerve regeneration not only impedes skin reinnervation and angiogenesis,but also damages the synergistic effects among them,eventually hinders healing quality.Nerve growth factor(NGF)has shown potent potential in peripheral nerve regeneration and promotion of angiogenesis.Angiogenin(ANG)is an independent angiogenic factor,supplying microenvironment needed for neurogenesis.This study presents a dermal scaffold with dual gene activity,fabricated by incorporating nanoparticles(NPs)composed of polyethylenimine(PEI)-chimeric plasmids encoding both NGF and ANG(PEI-plasmid NGF/ANG dermal scaffold(NADS)).Specifically,NADS achieves sustained and in situ release of these two factors,and encourages the repair cells to fulfill their regenerative roles.In vivo experiments confirm the efficacy of NADS in promoting fully functional innervated skin regeneration,inducing the fastest healing rates and rapidly facilitating the formation of a mature vascular network,thus resulting in high-quality wound healing.This approach offers an effective and comprehensive strategy for clinical application.展开更多
1.Overview of Neurorestoratology The rapidlyemergingmedical discipline,Neurorestoratology aims to restore damaged or lost neural functions and/or structures,thereby improving the quality of life of patients suffering ...1.Overview of Neurorestoratology The rapidlyemergingmedical discipline,Neurorestoratology aims to restore damaged or lost neural functions and/or structures,thereby improving the quality of life of patients suffering fromneuropsychiatric/neurodegenerative and neurotraumatic disorders.1,2 Based on neuroanatomy and neural functions,Neurorestoratology is divided into five branches:(1)The central nervous system Neurorestoratology.(2)Peripheral nervous system Neurorestoratology.(3)Autonomic nervous system Neurorestoratology.(4)Psychiatric Neurorestoratology.(5)Higher brain function Neurorestoratology.展开更多
Spinal cord injury(SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we transplanted adult spinal cord tissues(aSCTs) to replace...Spinal cord injury(SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we transplanted adult spinal cord tissues(aSCTs) to replace lost tissues and facilitate recovery in a rat SCI model. However, rodents display considerable differences from human patients in the scale, anatomy and functions of spinal cord systems, and responses after injury. Thus, use of a large animal SCI model is required to examine the repair efficiency of potential therapeutic approaches. In this study, we transplanted allogenic aSCTs from adult dogs to the lesion area of canines after complete transection of the thoracic spinal cord, and investigated the long-term cell survival and functional recovery. To enhance repair efficiency, a growth factor cocktail was added during aSCT transplantation, providing a favorable microenvironment. The results showed that transplantation of a SCTs, in particular with the addition of growth factors, significantly improves locomotor function restoration and increases the number of neurofilament-, microtubule-associated protein2-, 5-hydroxytryptamine-, choline acetyltransferase-and tyrosine hydroxylase-positive neurons in the lesion area at 6 months post-surgery. In addition, we demonstrated that donor neurons in a SCTs can survive for a long period after transplantation. This study showed for the first time that transplanting aSCTs combined with growth factor supplementation facilitates reconstruction of injured spinal cords, and consequently promotes long lasting motor function recovery in a large animal complete transected SCI model, and therefore could be considered as a possible therapeutic strategy in humans.展开更多
Clinical translational science:Clinical translational science(CTS)is a new discipline bridging laboratory discoveries and clinical applications.It is normally funded by research grants instead of investment major phar...Clinical translational science:Clinical translational science(CTS)is a new discipline bridging laboratory discoveries and clinical applications.It is normally funded by research grants instead of investment major pharmaceutical companies.It is patient-and populationor community-oriented.Repair of the human展开更多
The author compared in this study the effects of the treatment with integrated traditional andwestern medicine with that of routine western medicine alone on the recovery of patients with acute hyperten-sive cerebral ...The author compared in this study the effects of the treatment with integrated traditional andwestern medicine with that of routine western medicine alone on the recovery of patients with acute hyperten-sive cerebral hemorrhage. The results of the treatments showed that integrated traditional Chinese and west-ern medicine had better effect on speeding up the absorption of intracranial hematoma, elimination of en-cephaledema and restoration of neural functions than routine western medicine. There is significant differencebetween the results of the two kinds of treatment (P< 0. 05 ̄0. 01 ) , which suggested that treating patientsearly with traditional Chinese medicine greatly helps the recovery of patients with cerebral hemorrhage.展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China under Grant No.LTGG23E080001Scientific Research Foundation of Hangzhou City University under Grant Nos.X-202107 and X-202109Zhejiang Engineering Research Center of Intelligent Urban Infrastructure under Grant No.IUI2023-ZD-14.
文摘This article provides an overview of the current development status of prestressed segmental precast and assembled piers,Emphasis was placed on analyzing the stress characteristics of bridge piers under impact.The concept of recoverable functional design and its application prospects were elaborated,and finally,the research on the impact resistance performance of prestressed segmental precast and assembled pierswas discussed.Research has shown that optimizing design and material selection can effectively enhance the impact resistance and structural durability of bridge piers.At the same time,the introduction of the concept of recoverable functionality provides new ideas for the rapid repair and functional recovery of bridge piers,which helps to improve the recovery efficiency of bridges after extreme events.Future research should focus on the evaluation methods of impact resistance performance,new connection technologies,in-depth application of recoverable functional design,a combination of impact simulation experiments and numerical analysis,and exploration of comprehensive disaster prevention and reduction strategies.These research results will also promote the further development and innovation of prefabricated assembly technology in bridge engineering,bringing new ideas and methods to the field of engineering construction.
基金the Office of Research&Economic Development and Department of Civil,Coastal and Environmental Engineering at University of South Alabama for the support.
文摘The utilization of reclaimed asphalt pavement(RAP)in asphalt mixtures has gained momentum in recent years,yet concerns persist regarding the long-term performance and binder properties of high RAP content mixtures.To overcome these challenges,rejuvenators have emerged as a promising solution to enhance the properties of aged asphalt binders and improve the overall performance of asphalt mixtures.This paper provides a comprehensive state-of-the-art review of rejuvenator technology and its potential to enhance the performance and sustainability of asphalt pavements.Rejuvenators are additives used to restore the properties of aged asphalt binders,particularly when incorporating high percentages of RAP.The performance of these additives varies based on their origin,and different methods can be used to analyze the rejuvenation process.Since proper specifications for rejuvenators are not available,blending charts are used to determine the optimum dosage of rejuvenators.However,proper blending must be achieved to maximize results and reduce the effect of black rock.Laboratory tests and some field performance studies on rejuvenated aged asphalt binders and RAP mixtures have shown improved or similar performance compared to virgin materials.Additionally,the use of rejuvenators has been observed to reduce construction costs,suggesting that this is a cost-effective technology for asphalt pavements.While rejuvenators show promise in improving the performance of pavements with recycled materials,challenges remain regarding optimization,long-term durability,and environmental effects.This review paper also identifies key areas for future research,including life-cycle cost analyses,comprehensive environmental impact assessments,and long-term field performance monitoring.
文摘Nerve trauma commonly results in chronic neuropathic pain. This is by triggering the release of proinflammatory mediators from local and invading cells that induce inflammation and nociceptive neuron hyperexcitability. Even without apparent inflammation, injury sites are associated with increased inflammatory markers. This review focuses on how it might be possible to reduce neuropathic pain by reducing inflammation. Physiologically, pain is resolved by a combination of the out-migration of pro-inflammatory cells from the injury site, the down-regulation of the genes underlying the inflammation, up-regulating genes for anti-inflammatory mediators, and reducing nociceptive neuron hyperexcitability. While various techniques reduce chronic neuropathic pain, the best are effective on < 50% of patients, no technique reliably or permanently eliminates neuropathic pain. This is because most techniques are predominantly aimed at reducing pain, not inflammation. In addition, while single factors reduce pain, increasing evidence indicates significant and longer-lasting pain relief requires multiple factors acting simultaneously. Therefore, it is not surprising that extensive data indicate that the application of platelet-rich plasma provides more significant and longer-lasting pain suppression than other techniques, although its analgesia is neither complete nor permanent. However, several case reports indicate that platelet-rich plasma can induce permanent neuropathic pain elimination when the platelet concentration is significantly increased and is applied to longer nerve lengths. This review examines the primary triggers of the development and maintenance of neuropathic pain and techniques that reduce chronic neuropathic pain. The application of plateletrich plasma holds great promise for providing complete and permanent chronic neuropathic pain elimination.
文摘Spinal cord injury(SCI)is a debilitating condition that affects more than 2.5 million individuals worldwide(Thuret et al.,2006).In addition to its devastating effects on the individual,this disease is a heavy burden to the society in terms of health care costs, which are estimated in billions of dollars annually in most developed countries (Cadotte and Fehlings, 2011).
文摘The inferior alveolar nerve and facial nerve are the two most important nerves in the dental and maxillofacial region.The injury to them is one of the major postoperative complications after alveolar surgery and orthognathic surgery.However,recovering the nerve function after injury takes a long time and the recovery effect tends to be unsatisfactory.In recent years,an intensively investigated technique,low level laser which has been applying in assisting the recovery of nerve function,has been gradually proved to be effective in clinically treating postoperative nerve injury.In this article we review in terms of the mechanisms involved in low level laser-assisted functional restoration of nerve injury and its clinical application in the recovery of nerve function in the dental and maxillofacial area as well.
基金supported by the Youth Researcher Foundation of Shanghai Health Development Planning Commission,No.20124319
文摘Although some patients have successful peripheral nerve regeneration,a poor recovery of hand function often occurs after peripheral nerve injury.It is believed that the capability of brain plasticity is crucial for the recovery of hand function.The supplementary motor area may play a key role in brain remodeling after peripheral nerve injury.In this study,we explored the activation mode of the supplementary motor area during a motor imagery task.We investigated the plasticity of the central nervous system after brachial plexus injury,using the motor imagery task.Results from functional magnetic resonance imaging showed that after brachial plexus injury,the motor imagery task for the affected limbs of the patients triggered no obvious activation of bilateral supplementary motor areas.This result indicates that it is difficult to excite the supplementary motor areas of brachial plexus injury patients during a motor imagery task,thereby impacting brain remodeling.Deactivation of the supplementary motor area is likely to be a serious problem for brachial plexus injury patients in terms of preparing,initiating and executing certain movements,which may be partly responsible for the unsatisfactory clinical recovery of hand function.
基金supported by the National Natural Science Foundations of China(Nos.22122409,22377110,and 82402749)Henan Province Fund for Cultivating Advantageous Disciplines(No.222301420019).
文摘Restoring P53's autonomous anti-cancer function through P53 mRNA delivery is a promising anti-tumor strategy.Yet,in tumors harboring mutant P53,the existing mutant P53(Mutp53)would interferes with the anti-tumor function of Wtp53 through dominant-negative effect.Herein,we designed Vir-Z@R,a P53-repair nanosystem based on a virus-mimicking nanostructure to deliver P53 mRNA and Zn(Ⅱ)into tumor cells.By supplementing Wtp53 through P53 mRNA delivery and promoting the degradation of mutant P53 via a zinc ion-mediated proteasomal pathway,Vir-Z@R restores the autonomous tumor-suppressive function of P53 and induce tumor cell death through multiple mechanisms(interfering with energy metabolism and inducing apoptosis),leading to delayed tumor growth and prolonged survival in mice with Mutp53.This study provides a strategy for treatment of P53-mutant tumor.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40374045 and 40574051), and by the Jilin Technology Development Plan (Grant No 20050526),
文摘The stability of the periodic solution of the Duffing oscillator system in the periodic phase state is proved by using the Yoshizaw theorem, which establishes a theoretical basis for using this kind of chaotic oscillator system to detect weak signals. The restoring force term of the system affects the weak-signal detection ability of the system directly, the quantitative relationship between the coefficients of the linear and nonlinear items of the restoring force of the Duffing oscillator system and the SNR in the detection of weak signals is obtained through a large number of simulation experiments, then a new restoring force function with better detection results is established.
文摘Scar hyperplasia at the suture site is an important reason for hindering the repair effect of peripheral nerve injury anastomosis. To address this issue, two repair methods are often used. Biological agents are used to block nerve sutures and the surrounding tissue to achieve phys- ical anti-adhesion effects. Another agent is glucocorticosteroid, which can prevent scar growth by inhibiting inflammation. However, the overall effect of promoting regeneration of the injured nerve is not satisfactory. In this regard, we envision that these two methods can be combined and lead to shared understanding for achieving improved nerve repair. In this study, the right tibial nerve was transected 1 cm above the knee to establish a rat tibial nerve injury model. The incision was directly sutured after nerve transection. The anastomotic stoma was coated with 0.5 × 0.5 cm^2 chitosan sheets with betamethasone dipropionate. At 12 weeks after injury, compared with the con- trol and poly (D, L-lactic acid) groups, chitosan-betamethasone dipropionate film slowly degraded with the shape of the membrane still intact. Further, scar hyperplasia and the degree of adhesion at anastomotic stoma were obviously reduced, while the regenerated nerve fiber structure was complete and arranged in a good order in model rats. Electrophysiological study showed enhanced compound muscle action potential. Our results confirm that chitosan-betamethasone dipropionate film can effectively prevent local scar hyperplasia after tibial nerve repair and promote nerve regeneration.
基金the National Priorities Research Program (NPRP) (NPRP 5-457-2-181) from the Qatar National Research Fund (a member of Qatar Foundation)
文摘Visual prostheses are now entering the clinical marketplace. Such prostheses were originally targeted for patients suff ering from blindness through retinitis pigmentosa(RP). However, in late July of this year, for the first time a patient was given a retinal implant in order to treat dry agerelated macular degeneration. Retinal implants are suitable solutions for diseases that attack photoreceptors but spare most of the remaining retinal neurons. For eye diseases that result in loss of retinal output, implants that interface with more central structures in the visual system are needed. The standard site for central visual prostheses under development is the visual cortex. This perspective discusses the technical and socioeconomic challenges faced by visual prostheses.
文摘Non-invasive brain current stimulation(NIBS) is a promising and versatile tool for inducing neuroplasticity,protection and functional rehabilitation of damaged neuronal systems.It is technically simple,requires no surgery,and has significant beneficial effects.However,there are various technical approaches for NIBS which influence neuronal networks in significantly different ways.Transcranial direct current stimulation(t DCS),alternating current stimulation(ACS) and repetitive transcranial magnetic stimulation(r TMS) all have been applied to modulate brain activity in animal experiments under normal and pathological conditions.Also clinical trials have shown that t DCS,r TMS and ACS induce significant behavioural effects and can – depending on the parameters chosen – enhance or decrease brain excitability and influence performance and learning as well as rehabilitation and protective mechanisms.The diverse phaenomena and partially opposing effects of NIBS are not yet fully understood and mechanisms of action need to be explored further in order to select appropriate parameters for a given task,such as current type and strength,timing,distribution of current densities and electrode position.In this review,we will discuss the various parameters which need to be considered when designing a NIBS protocol and will put them into context with the envisaged applications in experimental neurobiology and medicine such as vision restoration,motor rehabilitation and cognitive enhancement.
文摘Restoring function to peripheral nerves with a gap is challenging,with<50%of patients undergoing nerve repair surgery recovering function.Sensory nerve grafts(autografts)are the clinical“gold standard”for bridging nerve gaps to restore sensory and motor function.They have significant limitations and restore meaningful function only across short gaps when repairs are performed soon after trauma and patients are young.When the value of any of these variables is large,the extent of recovery decreases precipitously,and when two or all are simultaneously large,there is little to no recovery.The extent of restored meaningful recovery has not increased in almost 70 years.Thus,novel techniques are needed that enhance both the extent of recovery and the percentage of patients who recover meaningful recovery.This paper reviews the limitations of autografts and other materials used to repair nerves.It also examines autologous platelet-rich plasma(PRP),a promising nerve gap repair technique that induces recovery in clinical settings where autografts are ineffective,including when the values of all three variables are simultaneously large.
基金supported by grants from the National Key R&D Program of China(Nos.2022YFC2403100 and 2022YFC2403104)the National Natural Science Foundation of China(Nos.81801911,82172198,and 82202443).
文摘Patients with extensive and deep skin defects treated with dermal scaffolds usually emphasize the importance of rapid angiogenesis,while overlook the crucial role of skin nerves in regenerative repair.Insufficient early nerve regeneration not only impedes skin reinnervation and angiogenesis,but also damages the synergistic effects among them,eventually hinders healing quality.Nerve growth factor(NGF)has shown potent potential in peripheral nerve regeneration and promotion of angiogenesis.Angiogenin(ANG)is an independent angiogenic factor,supplying microenvironment needed for neurogenesis.This study presents a dermal scaffold with dual gene activity,fabricated by incorporating nanoparticles(NPs)composed of polyethylenimine(PEI)-chimeric plasmids encoding both NGF and ANG(PEI-plasmid NGF/ANG dermal scaffold(NADS)).Specifically,NADS achieves sustained and in situ release of these two factors,and encourages the repair cells to fulfill their regenerative roles.In vivo experiments confirm the efficacy of NADS in promoting fully functional innervated skin regeneration,inducing the fastest healing rates and rapidly facilitating the formation of a mature vascular network,thus resulting in high-quality wound healing.This approach offers an effective and comprehensive strategy for clinical application.
文摘1.Overview of Neurorestoratology The rapidlyemergingmedical discipline,Neurorestoratology aims to restore damaged or lost neural functions and/or structures,thereby improving the quality of life of patients suffering fromneuropsychiatric/neurodegenerative and neurotraumatic disorders.1,2 Based on neuroanatomy and neural functions,Neurorestoratology is divided into five branches:(1)The central nervous system Neurorestoratology.(2)Peripheral nervous system Neurorestoratology.(3)Autonomic nervous system Neurorestoratology.(4)Psychiatric Neurorestoratology.(5)Higher brain function Neurorestoratology.
基金supported by the National Natural Science Foundation of China(81891002 and 81971178)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16040700)the National Key Research and Development Program of China(2017YFA0104701,2017YFA0104704,2016YFC1101501 and 2016YFC1101502)。
文摘Spinal cord injury(SCI), especially complete transected SCI, leads to loss of cells and extracellular matrix and functional impairments. In a previous study, we transplanted adult spinal cord tissues(aSCTs) to replace lost tissues and facilitate recovery in a rat SCI model. However, rodents display considerable differences from human patients in the scale, anatomy and functions of spinal cord systems, and responses after injury. Thus, use of a large animal SCI model is required to examine the repair efficiency of potential therapeutic approaches. In this study, we transplanted allogenic aSCTs from adult dogs to the lesion area of canines after complete transection of the thoracic spinal cord, and investigated the long-term cell survival and functional recovery. To enhance repair efficiency, a growth factor cocktail was added during aSCT transplantation, providing a favorable microenvironment. The results showed that transplantation of a SCTs, in particular with the addition of growth factors, significantly improves locomotor function restoration and increases the number of neurofilament-, microtubule-associated protein2-, 5-hydroxytryptamine-, choline acetyltransferase-and tyrosine hydroxylase-positive neurons in the lesion area at 6 months post-surgery. In addition, we demonstrated that donor neurons in a SCTs can survive for a long period after transplantation. This study showed for the first time that transplanting aSCTs combined with growth factor supplementation facilitates reconstruction of injured spinal cords, and consequently promotes long lasting motor function recovery in a large animal complete transected SCI model, and therefore could be considered as a possible therapeutic strategy in humans.
文摘Clinical translational science:Clinical translational science(CTS)is a new discipline bridging laboratory discoveries and clinical applications.It is normally funded by research grants instead of investment major pharmaceutical companies.It is patient-and populationor community-oriented.Repair of the human
文摘The author compared in this study the effects of the treatment with integrated traditional andwestern medicine with that of routine western medicine alone on the recovery of patients with acute hyperten-sive cerebral hemorrhage. The results of the treatments showed that integrated traditional Chinese and west-ern medicine had better effect on speeding up the absorption of intracranial hematoma, elimination of en-cephaledema and restoration of neural functions than routine western medicine. There is significant differencebetween the results of the two kinds of treatment (P< 0. 05 ̄0. 01 ) , which suggested that treating patientsearly with traditional Chinese medicine greatly helps the recovery of patients with cerebral hemorrhage.