Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a...Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a bottleneck to the widespread adoption of UCAN in 6G.In this paper,we propose Overlap Shard,a blockchain framework based on a novel reputation voting(RV)scheme,to dynamically manage the APs in UCAN.AP nodes in UCAN are distributed across multiple shards based on the RV scheme.That is,nodes with good reputation(virtuous behavior)are likely to be selected in the overlap shard.The RV mechanism ensures the security of UCAN because most APs adopt virtuous behaviors.Furthermore,to improve the efficiency of the Overlap Shard,we reduce cross-shard transactions by introducing core nodes.Specifically,a few nodes are overlapped in different shards,which can directly process the transactions in two shards instead of crossshard transactions.This greatly increases the speed of transactions between shards and thus the throughput of the overlap shard.The experiments show that the throughput of the overlap shard is about 2.5 times that of the non-sharded blockchain.展开更多
With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)of...With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method.展开更多
Crowdsourcing holds broad applications in information acquisition and dissemination,yet encounters challenges pertaining to data quality assessment and user reputation management.Reputation mechanisms stand as crucial...Crowdsourcing holds broad applications in information acquisition and dissemination,yet encounters challenges pertaining to data quality assessment and user reputation management.Reputation mechanisms stand as crucial solutions for appraising and updating participant reputation scores,thereby elevating the quality and dependability of crowdsourced data.However,these mechanisms face several challenges in traditional crowdsourcing systems:1)platform security lacks robust guarantees and may be susceptible to attacks;2)there exists a potential for large-scale privacy breaches;and 3)incentive mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task demander evaluations,occasionally lacking a dedicated reputation update module.This paper introduces a reputation update scheme tailored for crowdsourcing,with a focus on proficiently overseeing participant reputations and alleviating the impact of malicious activities on the sensing system.Here,the reputation update scheme is determined by an Empirical Cumulative distribution-based Outlier Detection method(ECOD).Our scheme embraces a blockchain-based crowdsourcing framework utilizing a homomorphic encryption method to ensure data transparency and tamper-resistance.Computation of user reputation scores relies on their behavioral history,actively discouraging undesirable conduct.Additionally,we introduce a dynamic weight incentive mechanism that mirrors alterations in participant reputation,enabling the system to allocate incentives based on user behavior and reputation.Our scheme undergoes evaluation on 11 datasets,revealing substantial enhancements in data credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.This research not only presents a practical solution for crowdsourcing reputation management but also offers valuable insights for future research and applications,holding promise for fostering more reliable and high-quality data collection in crowdsourcing across diverse domains.展开更多
In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughp...In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughput and fault tolerance.However,PoA suffers from the drawback of centralization dominated by a limited number of authorized nodes and the lack of anonymity due to the round-robin block proposal mechanism.As a result,traditional PoA is vulnerable to a single point of failure that compromises the security of the blockchain network.To address these issues,we propose a novel decentralized reputation management mechanism for permissioned blockchain networks to enhance security,promote liveness,and mitigate centralization while retaining the same throughput as traditional PoA.This paper aims to design an off-chain reputation evaluation and an on-chain reputation-aided consensus.First,we evaluate the nodes’reputation in the context of the blockchain networks and make the reputation globally verifiable through smart contracts.Second,building upon traditional PoA,we propose a reputation-aided PoA(rPoA)consensus to enhance securitywithout sacrificing throughput.In particular,rPoA can incentivize nodes to autonomously form committees based on reputation authority,which prevents block generation from being tracked through the randomness of reputation variation.Moreover,we develop a reputation-aided fork-choice rule for rPoA to promote the network’s liveness.Finally,experimental results show that the proposed rPoA achieves higher security performance while retaining transaction throughput compared to traditional PoA.展开更多
Enhancing the security of Wireless Sensor Networks(WSNs)improves the usability of their applications.Therefore,finding solutions to various attacks,such as the blackhole attack,is crucial for the success of WSN applic...Enhancing the security of Wireless Sensor Networks(WSNs)improves the usability of their applications.Therefore,finding solutions to various attacks,such as the blackhole attack,is crucial for the success of WSN applications.This paper proposes an enhanced version of the AODV(Ad Hoc On-Demand Distance Vector)protocol capable of detecting blackholes and malfunctioning benign nodes in WSNs,thereby avoiding them when delivering packets.The proposed version employs a network-based reputation system to select the best and most secure path to a destination.To achieve this goal,the proposed version utilizes the Watchdogs/Pathrater mechanisms in AODV to gather and broadcast reputations to all network nodes to build the network-based reputation system.To minimize the network overhead of the proposed approach,the paper uses reputation aggregator nodes only for forwarding reputation tables.Moreover,to reduce the overhead of updating reputation tables,the paper proposes three mechanisms,which are the prompt broadcast,the regular broadcast,and the light broadcast approaches.The proposed enhanced version has been designed to perform effectively in dynamic environments such as mobile WSNs where nodes,including blackholes,move continuously,which is considered a challenge for other protocols.Using the proposed enhanced protocol,a node evaluates the security of different routes to a destination and can select the most secure routing path.The paper provides an algorithm that explains the proposed protocol in detail and demonstrates a case study that shows the operations of calculating and updating reputation values when nodes move across different zones.Furthermore,the paper discusses the proposed approach’s overhead analysis to prove the proposed enhancement’s correctness and applicability.展开更多
In the lithium-ion battery(LIB)supply-chain,transactions involve several rounds of ordering,production and delivery between LIB suppliers and electric vehicle(EV)manufacturers.The sustainable performance of LIB suppli...In the lithium-ion battery(LIB)supply-chain,transactions involve several rounds of ordering,production and delivery between LIB suppliers and electric vehicle(EV)manufacturers.The sustainable performance of LIB suppliers,related to various characteristics,significantly affects the participants’sustainable reputations.The EV-LIB supply-chain transaction mechanism is explored from the perspective of the exchange economy comprehensively addressing both short-term economic profit and long-term sustainable reputation.Specifically,a“profit-reputation”utility function is proposed to reflect participants’expectations regarding cooperation profit and sustainable reputation.Additionally,an Edgeworth box model is developed to describe the participant’s balance determinations as a contract curve,revealing the Pareto conditions for mutually beneficial transactions based on sustainable performance.Furthermore,several principal-agent models are established to analyze the equilibrium of sustainable transactions within the EV-LIB supply-chain under varying dominance scenarios.A case study of an EV-LIB transaction is conducted to demonstrate the feasibility and effectiveness.This study aims to assist supply chain managers,researchers and decision-makers in exploring the role of participant’s sustainable reputation and its influence on supply-chain transaction and equilibrium,particularly in the context of designing cooperative contracts and negotiation process to foster sustainable supply chains.展开更多
This study analyses all A-share listed companies from 2015 to 2020 to empirically examine the impact of inquiry supervision on corporate value and the moderating influence of corporate social responsibility(CSR)on thi...This study analyses all A-share listed companies from 2015 to 2020 to empirically examine the impact of inquiry supervision on corporate value and the moderating influence of corporate social responsibility(CSR)on this relationship.Research has shown that inquiry supervision significantly reduces corporate value,and the corporate social responsibility previously performed by companies can weaken this negative impact.Furthermore,the heterogeneity test based on internal and external controls shows that the reputation protection effect of CSR is more significant for companies with a higher proportion of independent directors,companies with a higher proportion of institutional investors investing in stocks,regions with a higher degree of marketization,and regions with a higher level of rule of law.The research in this article validates the effectiveness of reputation protection and verifies that reputation protection,as an informal mechanism,is easier to fulfil a role in areas where formal mechanisms are perfect.In other words,formal and informal mechanisms appear to complement each other.These findings provide empirical insights into the governance of CSR.展开更多
船联网(internet of vehicle,IoS)是船舶信息交换的载体.基于区块链技术,在IoS上构建一种可信的信息交换机制,并提出相应的航行事件置信度计算与船舶信誉管理方案.该方案借鉴信息过滤的思想得到船舶综合相似度,利用加权熵值反向计算融...船联网(internet of vehicle,IoS)是船舶信息交换的载体.基于区块链技术,在IoS上构建一种可信的信息交换机制,并提出相应的航行事件置信度计算与船舶信誉管理方案.该方案借鉴信息过滤的思想得到船舶综合相似度,利用加权熵值反向计算融合的评级,根据回应船舶评级偏离融合评级的程度更新回应船舶的信誉值;然后采用最小二乘法建立信誉值倒数与评级误差之间的拟合关系,从而得以更新报告船舶的信誉值;进一步设计基于船舶信誉值的DPoS(delegated proof of stake)共识机制,旨在优先选择信誉值较高的船舶作为见证者船舶,以保障系统出块环境的稳定性和高效性.结果显示,在船舶滥用行为占比为40%的情况下,航行事件真实性判定的准确率仍在75%以上.研究表明,所提出的方案不仅有效提高了航行事件真实性判定的准确率,还能识别恶意船舶并限制其滥用行为,从而保证IoS环境的安全和稳定.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 61931005.
文摘Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a bottleneck to the widespread adoption of UCAN in 6G.In this paper,we propose Overlap Shard,a blockchain framework based on a novel reputation voting(RV)scheme,to dynamically manage the APs in UCAN.AP nodes in UCAN are distributed across multiple shards based on the RV scheme.That is,nodes with good reputation(virtuous behavior)are likely to be selected in the overlap shard.The RV mechanism ensures the security of UCAN because most APs adopt virtuous behaviors.Furthermore,to improve the efficiency of the Overlap Shard,we reduce cross-shard transactions by introducing core nodes.Specifically,a few nodes are overlapped in different shards,which can directly process the transactions in two shards instead of crossshard transactions.This greatly increases the speed of transactions between shards and thus the throughput of the overlap shard.The experiments show that the throughput of the overlap shard is about 2.5 times that of the non-sharded blockchain.
基金supported by the Open Foundation of Henan Key Laboratory of Cyberspace Situation Awareness(No.HNTS2022020)the Science and Technology Research Program of Henan Province of China(232102210134,182102210130)Key Research Projects of Henan Provincial Universities(25B520005).
文摘With the development of vehicle networks and the construction of roadside units,Vehicular Ad Hoc Networks(VANETs)are increasingly promoting cooperative computing patterns among vehicles.Vehicular edge computing(VEC)offers an effective solution to mitigate resource constraints by enabling task offloading to edge cloud infrastructure,thereby reducing the computational burden on connected vehicles.However,this sharing-based and distributed computing paradigm necessitates ensuring the credibility and reliability of various computation nodes.Existing vehicular edge computing platforms have not adequately considered themisbehavior of vehicles.We propose a practical task offloading algorithm based on reputation assessment to address the task offloading problem in vehicular edge computing under an unreliable environment.This approach integrates deep reinforcement learning and reputation management to address task offloading challenges.Simulation experiments conducted using Veins demonstrate the feasibility and effectiveness of the proposed method.
基金This work is supported by National Natural Science Foundation of China(Nos.U21A20463,62172117,61802383)Research Project of Pazhou Lab for Excellent Young Scholars(No.PZL2021KF0024)Guangzhou Basic and Applied Basic Research Foundation(Nos.202201010330,202201020162,202201020221).
文摘Crowdsourcing holds broad applications in information acquisition and dissemination,yet encounters challenges pertaining to data quality assessment and user reputation management.Reputation mechanisms stand as crucial solutions for appraising and updating participant reputation scores,thereby elevating the quality and dependability of crowdsourced data.However,these mechanisms face several challenges in traditional crowdsourcing systems:1)platform security lacks robust guarantees and may be susceptible to attacks;2)there exists a potential for large-scale privacy breaches;and 3)incentive mechanisms relying on reputation scores may encounter issues as reputation updates hinge on task demander evaluations,occasionally lacking a dedicated reputation update module.This paper introduces a reputation update scheme tailored for crowdsourcing,with a focus on proficiently overseeing participant reputations and alleviating the impact of malicious activities on the sensing system.Here,the reputation update scheme is determined by an Empirical Cumulative distribution-based Outlier Detection method(ECOD).Our scheme embraces a blockchain-based crowdsourcing framework utilizing a homomorphic encryption method to ensure data transparency and tamper-resistance.Computation of user reputation scores relies on their behavioral history,actively discouraging undesirable conduct.Additionally,we introduce a dynamic weight incentive mechanism that mirrors alterations in participant reputation,enabling the system to allocate incentives based on user behavior and reputation.Our scheme undergoes evaluation on 11 datasets,revealing substantial enhancements in data credibility for crowdsourcing systems and a reduction in the influence of malicious behavior.This research not only presents a practical solution for crowdsourcing reputation management but also offers valuable insights for future research and applications,holding promise for fostering more reliable and high-quality data collection in crowdsourcing across diverse domains.
基金supported by the Shenzhen Science and Technology Program under Grants KCXST20221021111404010,JSGG20220831103400002,JSGGKQTD20221101115655027,JCYJ 20210324094609027the National KeyR&DProgram of China under Grant 2021YFB2700900+1 种基金the National Natural Science Foundation of China under Grants 62371239,62376074,72301083the Jiangsu Specially-Appointed Professor Program 2021.
文摘In permissioned blockchain networks,the Proof of Authority(PoA)consensus,which uses the election of authorized nodes to validate transactions and blocks,has beenwidely advocated thanks to its high transaction throughput and fault tolerance.However,PoA suffers from the drawback of centralization dominated by a limited number of authorized nodes and the lack of anonymity due to the round-robin block proposal mechanism.As a result,traditional PoA is vulnerable to a single point of failure that compromises the security of the blockchain network.To address these issues,we propose a novel decentralized reputation management mechanism for permissioned blockchain networks to enhance security,promote liveness,and mitigate centralization while retaining the same throughput as traditional PoA.This paper aims to design an off-chain reputation evaluation and an on-chain reputation-aided consensus.First,we evaluate the nodes’reputation in the context of the blockchain networks and make the reputation globally verifiable through smart contracts.Second,building upon traditional PoA,we propose a reputation-aided PoA(rPoA)consensus to enhance securitywithout sacrificing throughput.In particular,rPoA can incentivize nodes to autonomously form committees based on reputation authority,which prevents block generation from being tracked through the randomness of reputation variation.Moreover,we develop a reputation-aided fork-choice rule for rPoA to promote the network’s liveness.Finally,experimental results show that the proposed rPoA achieves higher security performance while retaining transaction throughput compared to traditional PoA.
文摘Enhancing the security of Wireless Sensor Networks(WSNs)improves the usability of their applications.Therefore,finding solutions to various attacks,such as the blackhole attack,is crucial for the success of WSN applications.This paper proposes an enhanced version of the AODV(Ad Hoc On-Demand Distance Vector)protocol capable of detecting blackholes and malfunctioning benign nodes in WSNs,thereby avoiding them when delivering packets.The proposed version employs a network-based reputation system to select the best and most secure path to a destination.To achieve this goal,the proposed version utilizes the Watchdogs/Pathrater mechanisms in AODV to gather and broadcast reputations to all network nodes to build the network-based reputation system.To minimize the network overhead of the proposed approach,the paper uses reputation aggregator nodes only for forwarding reputation tables.Moreover,to reduce the overhead of updating reputation tables,the paper proposes three mechanisms,which are the prompt broadcast,the regular broadcast,and the light broadcast approaches.The proposed enhanced version has been designed to perform effectively in dynamic environments such as mobile WSNs where nodes,including blackholes,move continuously,which is considered a challenge for other protocols.Using the proposed enhanced protocol,a node evaluates the security of different routes to a destination and can select the most secure routing path.The paper provides an algorithm that explains the proposed protocol in detail and demonstrates a case study that shows the operations of calculating and updating reputation values when nodes move across different zones.Furthermore,the paper discusses the proposed approach’s overhead analysis to prove the proposed enhancement’s correctness and applicability.
基金supported by National Natural Science Foundation of China [Grant No.72071181]Natural Science Foundation of Zhejiang Province [Grant No.LY21G 020004].
文摘In the lithium-ion battery(LIB)supply-chain,transactions involve several rounds of ordering,production and delivery between LIB suppliers and electric vehicle(EV)manufacturers.The sustainable performance of LIB suppliers,related to various characteristics,significantly affects the participants’sustainable reputations.The EV-LIB supply-chain transaction mechanism is explored from the perspective of the exchange economy comprehensively addressing both short-term economic profit and long-term sustainable reputation.Specifically,a“profit-reputation”utility function is proposed to reflect participants’expectations regarding cooperation profit and sustainable reputation.Additionally,an Edgeworth box model is developed to describe the participant’s balance determinations as a contract curve,revealing the Pareto conditions for mutually beneficial transactions based on sustainable performance.Furthermore,several principal-agent models are established to analyze the equilibrium of sustainable transactions within the EV-LIB supply-chain under varying dominance scenarios.A case study of an EV-LIB transaction is conducted to demonstrate the feasibility and effectiveness.This study aims to assist supply chain managers,researchers and decision-makers in exploring the role of participant’s sustainable reputation and its influence on supply-chain transaction and equilibrium,particularly in the context of designing cooperative contracts and negotiation process to foster sustainable supply chains.
基金supported by the National Natural Science Foundation of China(72293573)the New Era Education Quality Project of Anhui Province(2022zyxwjxalk003)the Fundamental Research Funds for the Central Universities(YD2160004004,WK2040000090).
文摘This study analyses all A-share listed companies from 2015 to 2020 to empirically examine the impact of inquiry supervision on corporate value and the moderating influence of corporate social responsibility(CSR)on this relationship.Research has shown that inquiry supervision significantly reduces corporate value,and the corporate social responsibility previously performed by companies can weaken this negative impact.Furthermore,the heterogeneity test based on internal and external controls shows that the reputation protection effect of CSR is more significant for companies with a higher proportion of independent directors,companies with a higher proportion of institutional investors investing in stocks,regions with a higher degree of marketization,and regions with a higher level of rule of law.The research in this article validates the effectiveness of reputation protection and verifies that reputation protection,as an informal mechanism,is easier to fulfil a role in areas where formal mechanisms are perfect.In other words,formal and informal mechanisms appear to complement each other.These findings provide empirical insights into the governance of CSR.
文摘船联网(internet of vehicle,IoS)是船舶信息交换的载体.基于区块链技术,在IoS上构建一种可信的信息交换机制,并提出相应的航行事件置信度计算与船舶信誉管理方案.该方案借鉴信息过滤的思想得到船舶综合相似度,利用加权熵值反向计算融合的评级,根据回应船舶评级偏离融合评级的程度更新回应船舶的信誉值;然后采用最小二乘法建立信誉值倒数与评级误差之间的拟合关系,从而得以更新报告船舶的信誉值;进一步设计基于船舶信誉值的DPoS(delegated proof of stake)共识机制,旨在优先选择信誉值较高的船舶作为见证者船舶,以保障系统出块环境的稳定性和高效性.结果显示,在船舶滥用行为占比为40%的情况下,航行事件真实性判定的准确率仍在75%以上.研究表明,所提出的方案不仅有效提高了航行事件真实性判定的准确率,还能识别恶意船舶并限制其滥用行为,从而保证IoS环境的安全和稳定.