In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness tempera...In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.展开更多
In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal di...In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal dimension of the global attractors of this problem is finite.展开更多
In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular inde...In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.展开更多
To solve the problem of false edges in a flat region of l_(1)norm total variational TV model,an edge extractor based on non-local idea is proposed in this paper.The new edge extractor can effectively suppress the infl...To solve the problem of false edges in a flat region of l_(1)norm total variational TV model,an edge extractor based on non-local idea is proposed in this paper.The new edge extractor can effectively suppress the influence of noise and extract the edge information of the image.The new edge extractor is used as the adaptive function and the weighting function of the l_(p) norm variational model to control the noise reduction ability of the model,and a new model 1 is obtained.Considering that the new model 1 only uses the gradient mode as the image feature operator,which is insufficient to express the image texture information,a new level set curvature gradient variational model 2 combined with the edge extractor is proposed.The new model 2 uses the idea of minimum curvature of the level set of clear images to obtain noise reduction images.By coupling new model 1 and new model 2 to smooth the noise and protect more textures,a new Non-local level set denoising model(NLSDM)for image noise reduction is obtained.The experimental results show that compared with the noise reduction model,the new model has significantly improved the peak signal-to-noise ratio and structural similarity,and the effect of noise reduction and edge preservation is better.展开更多
基金Supported by National Natural Science Foundation of China(41805080)Natural Science Foundation of Anhui Province,China(1708085QD89)+1 种基金Key Research and Development Program Projects of Anhui Province,China(201904a07020099)Open Foundation Project Shenyang Institute of Atmospheric Environment,China Meteorological Administration(2016SYIAE14)
文摘In this paper,the application of an algorithm for precipitation retrieval based on Himawari-8 (H8) satellite infrared data is studied.Based on GPM precipitation data and H8 Infrared spectrum channel brightness temperature data,corresponding "precipitation field dictionary" and "channel brightness temperature dictionary" are formed.The retrieval of precipitation field based on brightness temperature data is studied through the classification rule of k-nearest neighbor domain (KNN) and regularization constraint.Firstly,the corresponding "dictionary" is constructed according to the training sample database of the matched GPM precipitation data and H8 brightness temperature data.Secondly,according to the fact that precipitation characteristics in small organizations in different storm environments are often repeated,KNN is used to identify the spectral brightness temperature signal of "precipitation" and "non-precipitation" based on "the dictionary".Finally,the precipitation field retrieval is carried out in the precipitation signal "subspace" based on the regular term constraint method.In the process of retrieval,the contribution rate of brightness temperature retrieval of different channels was determined by Bayesian model averaging (BMA) model.The preliminary experimental results based on the "quantitative" evaluation indexes show that the precipitation of H8 retrieval has a good correlation with the GPM truth value,with a small error and similar structure.
文摘In this article, we prove the existence of exponential attractors of the nonclassical diffusion equation with critical nonlinearity and lower regular forcing term. As an additional product, we show that the fractal dimension of the global attractors of this problem is finite.
基金Project supported by the Foundation for the Authors of the National Excellent Doctoral Thesis Award of China (200720)
文摘In this article, linear regular index 2 DAEs A(t)[D(t)x(t)]' + B(t)x(t) = q(t) are considered. Using a decoupling technique, initial condition and boundary condition are properly formulated. Regular index 1 DAEs are obtained by a regularization method. We study the behavior of the solution of the regularization system via asymptotic expansions. The error analysis between the solutions of the DAEs and its regularization system is given.
基金funded by National Nature Science Foundation of China,grant number 61302188.
文摘To solve the problem of false edges in a flat region of l_(1)norm total variational TV model,an edge extractor based on non-local idea is proposed in this paper.The new edge extractor can effectively suppress the influence of noise and extract the edge information of the image.The new edge extractor is used as the adaptive function and the weighting function of the l_(p) norm variational model to control the noise reduction ability of the model,and a new model 1 is obtained.Considering that the new model 1 only uses the gradient mode as the image feature operator,which is insufficient to express the image texture information,a new level set curvature gradient variational model 2 combined with the edge extractor is proposed.The new model 2 uses the idea of minimum curvature of the level set of clear images to obtain noise reduction images.By coupling new model 1 and new model 2 to smooth the noise and protect more textures,a new Non-local level set denoising model(NLSDM)for image noise reduction is obtained.The experimental results show that compared with the noise reduction model,the new model has significantly improved the peak signal-to-noise ratio and structural similarity,and the effect of noise reduction and edge preservation is better.