Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environme...Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.展开更多
Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,th...Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.展开更多
Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the co...Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the continuous increase in the cost of LIBs.Along with the rapid development of electric transportation,it has become inevitable to trigger a new round of competition in alternative energy storage systems.Some monovalent rechargeable metal ion batteries(sodium ion batteries(SIBs)and potassium ion batteries(PIBs),etc.)and multi-valent rechargeable metal-ion batteries(magnesium ion batteries(MIBs),calcium ion batteries(CIBs),zinc ion batteries(ZIBs),and aluminum ion batteries(AIBs),etc.)are potential candidates,which can replace LIBs in some of the scenarios to alleviate the pressure on supply.The cathode material plays a crucial role in determining the battery capacity.Transition metal compounds dominated by layered transition metal oxides as key cathode materials for secondary batteries play an important role in the advancement of various battery energy storage systems.In summary,this manuscript aims to review and summarize the research progress on transition metal compounds used as cathodes in different metal ion batteries,with the aim of providing valuable guidance for the exploration and design of high-performance integrated battery systems.展开更多
Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used...Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms.展开更多
Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly s...Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly software tool developed to estimate natural groundwater recharge using two widely adopted approaches:the Water Balance(WB)method and Water Table Fluctuation(WTF)method.In the WB approach,the catchment area is divided into seven land-use categories,each representing distinct recharge characteristics.The tool includes eighteen different reference Evapotranspiration(ET0)estimation methods,accommodating varying levels of climatic input data availability.Additional required inputs include crop coefficients for major crops and Curve Numbers(CN)for specific land-use types.The WTF approach considers up to three aquifer layers with different specific yields(for unconfined aquifer)or storage coeffi-cient(for confined aquifer).It also takes into account groundwater withdrawal(draft)and lateral water movement within or outside the aquifer system.M-RechargeCal is process-based and does not require cali-bration.Its performance was evaluated using six datasets from humid-subtropical environments,demon-2 strating reliable results(R=0.867,r=0.93,RE=10.6%,PMARE=9.8,ENS=0.93).The model can be applied to defined hydrological or hydrogeological units such as watersheds,aquifers,or catchments,and can be used to assess the impacts of land-use/land-cover changes on hydrological components.However,it has not yet been tested in arid regions.M-RechargeCal provides modelers and planners with a practical,accessible tool for recharge estimation to support groundwater modeling and water resource planning.The software is available free of charge and can be downloaded from the author's institutional website or obtained by contacting the author via email.展开更多
Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic ap...Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic applications recently.Due to the catalytic deficiency of neutral carbon atoms,the usage of single lignocellulosic-based carbon materials in electrocatalysis involving energy storage and conversion presents unsatisfactory applicability.However,atomic-level modulation of lignocellulose-based carbon materials can optimize the electronic structures,charge separation,transfer processes,and so forth,which results in substantially enhanced electrocatalytic performance of carbon-based catalysts.This paper reviews the recent advances in the rational design of lignocellulosic-based carbon materials as electrocatalysts from an atomic-level perspective,such as self/external heteroatom doping and metal modification.Then,through systematic discussion of the design principles and reaction mechanisms of the catalysts,the applications of the prepared lignocellulosic-based catalysts in rechargeable batteries and electrocatalysis are reviewed.Finally,the challenges in improving the catalytic performance of lignocellulosic-based carbon materials as electrocatalysts and the prospects in diverse applications are reviewed.This review contributes to the synthesis strategy of lignocellulose-based carbon electrocatalysts via atomic-level modulation,which in turn promotes the lignocellulose valorization for energy storage and conversion.展开更多
Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water s...Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water supplies become critically low especially during early summers and dry periods to sustain agriculture and livelihoods in the region. In the present study, groundwater prospects were investigated using vertical electrical sounding(VES) technique to supplement irrigation and domestic water supplies in the Upper Indus Basin of Pakistan. The findings of the study revealed groundwater potential of about 7 km~3 in the aquifer, the yield of which may vary depending on the geological setup and characteristics of the subsurface lithology. The mean thickness of the aquifer was estimated to be approximately 11 m across the surveyed area, which spans about 2,093 km~2. Areas with favorable aquifer potential(exceeding 30 m in thickness) account for only approximately 8.4% of the region, while moderate potential(20–30 m thickness) is present in about 19.8% of the surveyed area. Groundwater occurrence is limited in the elevated northeastern regions due to the prevalence of unfractured igneous and metamorphic rock formations. However, in-depth hydrogeological investigations and hydro-dynamics research would be helpful in understanding precise nature of the aquifer system as well as links between various recharge components of the groundwater in the region. An integrated water resource management approach would be beneficial for sustaining agriculture and livelihoods in this diverse mountainous region in future.展开更多
Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage ...Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage in structures such as dams,tunnels,canals,and pipelines.By utilizing a few easily measurable parameters,engineers can employ these formulas to generate preliminary leakage rate estimates before proceeding with more detailed analyses.In this study,a physical model was developed,and a series of experiments were conducted,considering variables such as inflow rate,materials constituting the unsaturated medium,and variations in infiltration trench depth and width.As a result,a novel artificial recharge method was introduced,and an empirical equation,Q_(out)=0.0066×D_(50)^(0.64)×L×P^(0.36),was proposed to estimate the infiltration capacity of the trench.This equation incorporates factors such as the wetted perimeter,mean soil particle diameter,trench length,and a coefficient.A comparative analysis between the observed data from nine Iranian earthen canals and the values calculated using the proposed equation revealed an average relative error of 15%between the two datasets.In addition,the Pearson correlation coefficient was determined to be 0.981 and the Root Mean Square Error(RMSE)was 0.381,demonstrating the strong predictive performance of the equation.The parameters considered in the proposed equation allow for its application across diverse regions.Given its accurate performance,this equation provides a reliable initial estimate of the leakage rate,thereby helping to reduce costs and save time.展开更多
This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)perio...This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community.展开更多
Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC chan...Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion.展开更多
Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under di...Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization.展开更多
Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction poten...Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries.展开更多
Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of re...Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of recent advancements across various battery systems,including lithium-ion,sodium-ion,potassium-ion,and multivalent metal-ion batteries such as magnesium,zinc,calcium,and aluminum.Emerging technologies,including dual-ion,redox flow,and anion batteries,are also discussed.Particular attention is given to alkali metal rechargeable systems,such as lithium-sulfur,lithium-air,sodium-sulfur,sodium-selenium,potassium-sulfur,potassium-selenium,potassium-air,and zinc-air batteries,which have shown significant promise for high-energy applications.The optimization of key components—cathodes,anodes,electrolytes,and interfaces—is extensively analyzed,supported by advanced characterization techniques like time-of-flight secondary ion mass spectrometry(TOF-SIMS),synchrotron radiation,nuclear magnetic resonance(NMR),and in-situ spectroscopy.Moreover,sustainable strategies for recycling spent batteries,including pyrometallurgy,hydrometallurgy,and direct recycling,are critically evaluated to mitigate environmental impacts and resource scarcity.This review not only highlights the latest technological breakthroughs but also identifies key challenges in reaction mechanisms,material design,system integration,and waste battery recycling,and presents a roadmap for advancing high-performance and sustainable battery technologies.展开更多
Dendrite formation and side reactions,which originate from uncontrolled zinc(Zn)nucleation and growth and high water activity,remain the two critical challenges that hinder the practical implementation of Zn anodes fo...Dendrite formation and side reactions,which originate from uncontrolled zinc(Zn)nucleation and growth and high water activity,remain the two critical challenges that hinder the practical implementation of Zn anodes for rechargeable aqueous batteries.In this work,we propose a cation and anion comodulation strategy to realize highly textured and durable Zn anodes.As a proof of concept,1-ethyl-1-methylpyrrolidinium bromide(MEPBr)is selected as a versatile additive to regulate Zn deposition.Specifically,MEP^(+)cations with preferential adsorption on tips/edges first promote uniform primary Zn nucleation on the substrate,followed by dynamic“edge shielding”of existing deposits to guide highly oriented Zn growth.Meanwhile,the incorporation of Br^(-)anions promotes the enrichment of Zn^(2+)at the electrode-electrolyte interface(EEI),thereby facilitating Zn deposition kinetics.In addition,both the preferentially adsorbed MEP^(+)cations and Br^(-)anions create a water-poor EEI while the two ionic species disrupt the original hydrogen bond network and reduce water within the solvation structure in the bulk electrolyte through ion-water interactions,thus dramatically reducing water-induced side reactions.As a result,the Zn//Zn symmetric battery with the MEPBr-modulated electrolyte exhibits a remarkable lifespan of over 4000 h at 2 m A cm^(-2)and 1 mA h cm^(-2).More excitingly,the newly designed electrolyte enables a Zn//NaV_(3)O_(8)·1.5H_(2)O full battery with a thin Zn anode(50μm)and a high mass-loading cathode(~10 mg cm^(-2))to operate normally for over 300 cycles with remarkable capacity retention,showcasing its great potential for practical applications.展开更多
Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the...Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the decline in both the quantity and quality of groundwater resources.This study is focused on an intensively irrigated region of Northern India to investigate the sources and mechanism of groundwater recharge using a novel integrated approach combining isotope hydrology,Artificial Neural Network(ANN),and hydrogeochemical models.The study identifies several key sources of groundwater recharge,including natural precipitation,river infiltration,Irrigation Return Flow(IRF),and recharge from canals.Some groundwater samples exhibit mixing from various sources.Groundwater recharge from IRF is found to be isotopically enriched due to evaporation and characterized by high Cl−.Stable isotope modeling of evaporative enrichment in irrigated water helped to differentiate the IRF during various cultivation periods(Kharif and Rabi)and deduce the climatic conditions prevailed during the time of recharge.The model quantified that 29%of the irrigated water is lost due to evaporation during the Kharif period and 20%during the Rabi period,reflecting the seasonal variations in IRF contribution to the groundwater.The ANN model,trained with isotope hydrogeochemical data,effectively captures the complex interrelationships between various recharge sources,providing a robust framework for understanding the groundwater dynamics in the study area.A conceptual model was developed to visualize the spatial and temporal distribution of recharge sources,highlighting how seasonal irrigation practices influence the groundwater.The integration of isotope hydrology with ANN methodologies proved to be effective in elucidating the multiple sources and processes of groundwater recharge,offering insights into the sustainability of aquifer systems in intensively irrigated regions.These findings are critical for developing data-driven groundwater management strategies that can adapt to future challenges,including climate change,shifting land use patterns,and evolving agricultural demands.The results have significant implications for policymakers and water resource managers seeking to ensure sustainable groundwater use in water-scarce regions.展开更多
Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction ki...Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction kinetics issues of rechargeable magnesium batteries(RMBs)by providing more active sites as well as releasing inner stress during cycling.Herein,WO_(3)@WO_(3-x)S_(x) owning crystalline@amorphous core-shell structure containing both active core and active shell is constructed successfully by introducing S into metastable WO3 structure under temperaturefield applying.In such structure,amorphous shell would provide continuous Mg^(2+)diffusion channels due to its isotropy property for most Mg^(2+)migrating rapidly to interface and then adsorb at ions reservoir formed by interfacial electricfield for increasing specific capacity.It also makes security for stable structure of WO_(3)@WO_(3-x)S_(x) by alleviating volume expansion of crystalline core WO_(3) during cycling to prolong cycling life.Additionally,“softer”ions S^(2-)would weaken interaction between hard acid Mg^(2+) and ionic lattice to enhance Mg^(2+)storage kinetics.Therefore,WO_(3)@WO_(3-x)S_(x) delivers the superior cycling performance(1000 cycles with 83.3%),rate capability(88.5 mAh g^(-1) at 1000 mA g^(-1))and specific capacity(about 150 mAh g^(-1) at 50 mA g^(-1)),which is near 2 times higher than that of WO3.It is believed that the crystalline@amorphous core-shell structure with both active core and shell designing via doping strategy is enlightening for the development of high-performance RMBs,and such design can be extended to other energy storage devices for better electrochemical performance.展开更多
The growing severity of environmental challenges has accelerated advancements in renewable energy technologies,highlighting the critical need for efficient energy storage solutions.Rechargeable batteries,as primary sh...The growing severity of environmental challenges has accelerated advancements in renewable energy technologies,highlighting the critical need for efficient energy storage solutions.Rechargeable batteries,as primary short-term energy storage devices,have seen significant progress.Among emerging optimization strategies,high-entropy electrolytes have garnered attention for their superior ionic conductivity and ability to broaden batteries’operational temperature ranges.Rooted in the thermodynamic concept of entropy,high-entropy materials,originally exemplified by high-entropy alloys,have demonstrated enhanced structural stability and advanced electrochemical performance through the synergistic integration of multiple components.High-entropy liquid electrolytes,both aqueous and non-aqueous,offer unique opportunities for entropy manipulation due to their inherently disordered structures.However,their complex compositions present challenges,as minor changes in formulation can lead to significant performance variations.This review introduces the fundamentals of entropy tuning,surveys recent advances in high-entropy liquid electrolytes,and analyzes the interplay between entropy and electrochemical behavior.Finally,it discusses design strategies and future perspectives for the practical implementation of high-entropy liquid electrolytes in next-generation energy storage systems.展开更多
1.Motivation.There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li ion batteries are limited by price fluctuations of resources,resource availabi...1.Motivation.There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li ion batteries are limited by price fluctuations of resources,resource availability,as well as their theoretical capacities so that the community is exploring alternative battery chemistries to expand the portfolio of available battery types.展开更多
Thermoelectric technology that utilizes thermodynamic effects to convert thermal energy into electrical energy has greatly expanded wearable health monitoring,personalized detecting,and communicating applications.Enco...Thermoelectric technology that utilizes thermodynamic effects to convert thermal energy into electrical energy has greatly expanded wearable health monitoring,personalized detecting,and communicating applications.Encouragingly,thermoelectric technology assisted by artificial intelligence exerts great development potential in wearable electronic devices that rely on the self-sustainable operation of human body heat.Ionic thermoelectric(i-TE)devices that possess high Seebeck coefficients and a constant and stable electrical output are expected to achieve an effective conversation of thermal energy harvesting.Herein,we developed an i-TE paster for thermal chargeable energy storage,temperature-triggered material recognition,contact/non-contact temperature detection,and photo thermoelectric conversion applications.An all-solid-state organic ionic gel electrolyte(PVDF-HFP-PEO gel)with onion epidermal cells-like structure was sandwiched between two electrodes,which take full advantage of a synergy between the Soret effect and the polymer thermal expansion effect,thus achieving the enhanced ZT value up to 900%compared with the PEO-free electrolyte.The i-TE device delivers a Seebeck coefficient of 28 mV K^(−1),a maximum energy conversion efficiency of 1.3%in performance,and ultra-thin and skin-attachable properties in wearability,which demonstrate the great potential and application prospect of the i-TE paster in self-sustainable wearable electronics.展开更多
In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith...In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.展开更多
基金supported by the National Natural Science Foundation of China (22379038)Science Research Project of Hebei Education Department (JZX2024015)+4 种基金Shijiazhuang Science and Technology Plan Project (241791357A)Central Guidance for Local Science and Technology Development Funds Project (246Z4408G)Excellent Youth Research Innovation Team of Hebei University (QNTD202410)High-level Talents Research Start-Up Project of Hebei University (521100224223)Hebei Province Innovation Capability Enhancement Plan Project (22567620H)。
文摘Rechargeable zinc(Zn)-ion batteries(RZIBs) with hydrogel electrolytes(HEs) have gained significant attention in the last decade owing to their high safety, low cost, sufficient material abundance, and superb environmental friendliness, which is extremely important for wearable energy storage applications. Given that HEs play a critical role in building flexible RZIBs, it is urgent to summarize the recent advances in this field and elucidate the design principles of HEs for practical applications. This review systematically presents the development history, recent advances in the material fundamentals, functional designs, challenges, and prospects of the HEs-based RZIBs. Firstly, the fundamentals, species, and flexible mechanisms of HEs are discussed, along with their compatibility with Zn anodes and various cathodes. Then, the functional designs of hydrogel electrolytes in harsh conditions are comprehensively discussed, including high/low/wide-temperature windows, mechanical deformations(e.g., bending, twisting, and straining), and damages(e.g., cutting, burning, and soaking). Finally, the remaining challenges and future perspectives for advancing HEs-based RZIBs are outlined.
基金support of the National Natural Science Foundation of China(Grant No.22225801,22178217 and 22308216)supported by the Fundamental Research Funds for the Central Universities,conducted at Tongji University.
文摘Rechargeable magnesium batteries(RMBs)have been considered a promising“post lithium-ion battery”system to meet the rapidly increasing demand of the emerging electric vehicle and grid energy storage market.However,the sluggish diffusion kinetics of bivalent Mg^(2+)in the host material,related to the strong Coulomb effect between Mg^(2+)and host anion lattices,hinders their further development toward practical applications.Defect engineering,regarded as an effective strategy to break through the slow migration puzzle,has been validated in various cathode materials for RMBs.In this review,we first thoroughly understand the intrinsic mechanism of Mg^(2+)diffusion in cathode materials,from which the key factors affecting ion diffusion are further presented.Then,the positive effects of purposely introduced defects,including vacancy and doping,and the corresponding strategies for introducing various defects are discussed.The applications of defect engineering in cathode materials for RMBs with advanced electrochemical properties are also summarized.Finally,the existing challenges and future perspectives of defect engineering in cathode materials for the overall high-performance RMBs are described.
基金support from the Nuclear Fuel Pellet Appearance Quality Inspection Device Project(20190304 A).
文摘Thefield of energy storage devices is primarily dominated by lithium-ion batteries(LIBs)due to their mature manufacturing processes and stable performance.However,immature lithium recovery technology cannot stop the continuous increase in the cost of LIBs.Along with the rapid development of electric transportation,it has become inevitable to trigger a new round of competition in alternative energy storage systems.Some monovalent rechargeable metal ion batteries(sodium ion batteries(SIBs)and potassium ion batteries(PIBs),etc.)and multi-valent rechargeable metal-ion batteries(magnesium ion batteries(MIBs),calcium ion batteries(CIBs),zinc ion batteries(ZIBs),and aluminum ion batteries(AIBs),etc.)are potential candidates,which can replace LIBs in some of the scenarios to alleviate the pressure on supply.The cathode material plays a crucial role in determining the battery capacity.Transition metal compounds dominated by layered transition metal oxides as key cathode materials for secondary batteries play an important role in the advancement of various battery energy storage systems.In summary,this manuscript aims to review and summarize the research progress on transition metal compounds used as cathodes in different metal ion batteries,with the aim of providing valuable guidance for the exploration and design of high-performance integrated battery systems.
基金supported by the National Natural Science Foundation of China(No.U2040210).
文摘Interaction between the Yangtze River and its tributaries in the Three Gorges Reservoir has an important influence on tributary algal blooms.Taking the Xiaojiang River as a typical tributary,a binary mixing model used stable isotopes of hydrogen and oxygen to quantitatively analyze the water contribution and nutrient source structure of the tributary backwater area.Results showed that the isotope content(δD:−54.7‰,δ^(18)O−7.8‰)in the Yangtze River was higher than that in the tributaries(δD:−74.2‰,δ^(18)O−17.0‰)in the non-flood season and lower than that in the tributaries in the flood season.The Yangtze River contributed more than 50%water volume of the tributary backwater area in the non-flood season.The total nitrogen and total phosphorus concentrations in the backwater area were estimated based on water contribution ratio,and the results were in good agreement with the monitoring results.Load estimation showed that the nitrogen and phosphorus contribution ratio of the Yangtze River to the tributary backwater area was approximately 40%-80%in the non-flood season,and approximately 20%-40%in the flood season,on average.This study showed that the interaction between the Xiaojiang River and the Yangtze River is significant,and that Yangtze River recharge is an important source of nutrients in the Xiaojiang backwater area,which may play a driving role in Xiaojiang River algal blooms.
文摘Quantifying the spatial and temporal distribution of natural groundwater recharge is essential for effective groundwater modeling and sustainable resource management.This paper presents M-RechargeCal,a user-friendly software tool developed to estimate natural groundwater recharge using two widely adopted approaches:the Water Balance(WB)method and Water Table Fluctuation(WTF)method.In the WB approach,the catchment area is divided into seven land-use categories,each representing distinct recharge characteristics.The tool includes eighteen different reference Evapotranspiration(ET0)estimation methods,accommodating varying levels of climatic input data availability.Additional required inputs include crop coefficients for major crops and Curve Numbers(CN)for specific land-use types.The WTF approach considers up to three aquifer layers with different specific yields(for unconfined aquifer)or storage coeffi-cient(for confined aquifer).It also takes into account groundwater withdrawal(draft)and lateral water movement within or outside the aquifer system.M-RechargeCal is process-based and does not require cali-bration.Its performance was evaluated using six datasets from humid-subtropical environments,demon-2 strating reliable results(R=0.867,r=0.93,RE=10.6%,PMARE=9.8,ENS=0.93).The model can be applied to defined hydrological or hydrogeological units such as watersheds,aquifers,or catchments,and can be used to assess the impacts of land-use/land-cover changes on hydrological components.However,it has not yet been tested in arid regions.M-RechargeCal provides modelers and planners with a practical,accessible tool for recharge estimation to support groundwater modeling and water resource planning.The software is available free of charge and can be downloaded from the author's institutional website or obtained by contacting the author via email.
基金supported by the National Natural Science Foundation of China(32071721,32071720,32271814,32301530,32471806)Tianjin Excellent Special Commissioner for Agricultural Science and Technology Project(23ZYCGSN00580)+4 种基金Young Elite Scientist Sponsorship Program by Cast(No.YESS20230242)Natural Science Foundation of Tianjin(23JCZDJC00630)the China Postdoctoral Science Foundation under Grant Number(2023M741363,2023M740563)the Postdoctoral Innovation Project of Shandong Province(SDCX-ZG-202302031)China Scholarship Council(No.202408120091,No.202408120105).
文摘Carbon electrocatalyst materials based on lignocellulosic biomass with multi-components,various dimensions,high carbon content,and hierarchical morphology structures have gained great popularity in electrocatalytic applications recently.Due to the catalytic deficiency of neutral carbon atoms,the usage of single lignocellulosic-based carbon materials in electrocatalysis involving energy storage and conversion presents unsatisfactory applicability.However,atomic-level modulation of lignocellulose-based carbon materials can optimize the electronic structures,charge separation,transfer processes,and so forth,which results in substantially enhanced electrocatalytic performance of carbon-based catalysts.This paper reviews the recent advances in the rational design of lignocellulosic-based carbon materials as electrocatalysts from an atomic-level perspective,such as self/external heteroatom doping and metal modification.Then,through systematic discussion of the design principles and reaction mechanisms of the catalysts,the applications of the prepared lignocellulosic-based catalysts in rechargeable batteries and electrocatalysis are reviewed.Finally,the challenges in improving the catalytic performance of lignocellulosic-based carbon materials as electrocatalysts and the prospects in diverse applications are reviewed.This review contributes to the synthesis strategy of lignocellulose-based carbon electrocatalysts via atomic-level modulation,which in turn promotes the lignocellulose valorization for energy storage and conversion.
文摘Rapid changes in climate and cryosphere coupled with growing demand of water for irrigation, industrial and domestic use are putting high stress on the existing water resources of the Himalayan region. Surface water supplies become critically low especially during early summers and dry periods to sustain agriculture and livelihoods in the region. In the present study, groundwater prospects were investigated using vertical electrical sounding(VES) technique to supplement irrigation and domestic water supplies in the Upper Indus Basin of Pakistan. The findings of the study revealed groundwater potential of about 7 km~3 in the aquifer, the yield of which may vary depending on the geological setup and characteristics of the subsurface lithology. The mean thickness of the aquifer was estimated to be approximately 11 m across the surveyed area, which spans about 2,093 km~2. Areas with favorable aquifer potential(exceeding 30 m in thickness) account for only approximately 8.4% of the region, while moderate potential(20–30 m thickness) is present in about 19.8% of the surveyed area. Groundwater occurrence is limited in the elevated northeastern regions due to the prevalence of unfractured igneous and metamorphic rock formations. However, in-depth hydrogeological investigations and hydro-dynamics research would be helpful in understanding precise nature of the aquifer system as well as links between various recharge components of the groundwater in the region. An integrated water resource management approach would be beneficial for sustaining agriculture and livelihoods in this diverse mountainous region in future.
文摘Empirical formulas are indispensable tools in water engineering and hydraulic structure design.Derived from meticulous field observations,experiments,and diverse datasets,these formulas help to estimate water leakage in structures such as dams,tunnels,canals,and pipelines.By utilizing a few easily measurable parameters,engineers can employ these formulas to generate preliminary leakage rate estimates before proceeding with more detailed analyses.In this study,a physical model was developed,and a series of experiments were conducted,considering variables such as inflow rate,materials constituting the unsaturated medium,and variations in infiltration trench depth and width.As a result,a novel artificial recharge method was introduced,and an empirical equation,Q_(out)=0.0066×D_(50)^(0.64)×L×P^(0.36),was proposed to estimate the infiltration capacity of the trench.This equation incorporates factors such as the wetted perimeter,mean soil particle diameter,trench length,and a coefficient.A comparative analysis between the observed data from nine Iranian earthen canals and the values calculated using the proposed equation revealed an average relative error of 15%between the two datasets.In addition,the Pearson correlation coefficient was determined to be 0.981 and the Root Mean Square Error(RMSE)was 0.381,demonstrating the strong predictive performance of the equation.The parameters considered in the proposed equation allow for its application across diverse regions.Given its accurate performance,this equation provides a reliable initial estimate of the leakage rate,thereby helping to reduce costs and save time.
文摘This research examines the hard-rock aquifer system within the Nagavathi River Basin(NRB)South India,by evaluating seasonal fluctuations in groundwater composition during the pre-monsoon(PRM)and post-monsoon(POM)periods.Seasonal variations significantly influence the groundwater quality,particularly fluoride(F−)concentrations,which can fluctuate due to changes in recharge,evaporation,and anthropogenic activities.This study assesses the dynamics of F−levels in PRM and POM seasons,and identifies elevated health risks using USEPA guidelines and Monte Carlo Simulations(MCS).Groundwater in the study area exhibits alkaline pH,with NaCl and Ca-Na-HCO_(3) facies increasing in the POM season due to intensified ion exchange and rock-water interactions,as indicated in Piper and Gibb’s diagrams.Correlation and dendrogram analyses indicate that F−contamination is from geogenic and anthropogenic sources.F−levels exceed the WHO limit(1.5 mg/L)in 51 PRM and 28 POM samples,affecting 371.74 km^(2) and 203.05 km^(2),respectively.Geochemical processes,including mineral weathering,cation exchange,evaporation,and dilution,are identified through CAI I&II.Health risk assessments reveal that HQ values>1 in 78%of children,73%of teens,and 68%of adults during PRM,decreasing to 45%,40%,and 38%,respectively,in POM.MCS show maximum HQ values of 5.67(PRM)and 4.73(POM)in children,with all age groups facing significant risks from fluoride ingestion.Managed Aquifer Recharge(MAR)is recommended in this study to minimize F−contamination,ensuring safe drinking water for the community.
文摘Increased population mobility in urban areas drives higher water demand and significant changes in Land Use and Land Cover(LULC),which directly impact groundwater recharge capacity.This study aims to predict LULC changes in 2030 and 2040,analyse groundwater recharge quantities for historical,current,and projected conditions,and evaluate the combined impacts of LULC and climate change.The Cellular Automata-Artificial Neural Network(CA-ANN)method was employed to predict LULC changes,using classified and interpreted land use data from Landsat 7 ETM+(2000 and 2010)and Landsat 8 OLI(2020)imagery.The Soil and Water Assessment Tool(SWAT)model was used to simulate groundwater recharge.Input data for the SWAT model included Digital Elevation Model(DEM),soil type,LULC,slope,and climate data.Climate projections were based on five Regional Climate Models(RCMs)for two time periods,2021–2030 and 2031–2040,under Shared Socioeconomic Pathways(SSP)scenarios 2–45 and 5–85.The results indicate a significant increase in built-up areas,accounting for 71.08%in 2030 and 71.83%in 2040.Groundwater recharge projections show a decline,with average monthly recharge decreas-ing from 83.85 mm/month under SSP2-45 to 78.25 mm/month under SSP5-85 in 2030,and further declin-ing to 82.10 mm/month(SSP2-45)and 77.44 mm/month(SSP5-85)in 2040.The expansion of impervious surfaces due to urbanization is the primary factor driving this decline.This study highlights the innovative integration of CA-ANN-based LULC predictions with climate projections from RCMs,offering a robust framework for analysing urban groundwater dynamics.The findings underscore the need for sustainable urban planning and water resource management to mitigate the adverse effects of urbanization and climate change.Additionally,the methodological framework and insights gained from this research can be applied to other urban areas facing similar challenges,thus contributing to broader efforts in groundwater conserva-tion.
基金supported by the Hydrogeological Investigation Project in Kaidu River and Kongque River Basin in Xinjiang,China(No.DD2020171)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province(No.2020006).
文摘Understanding the infiltration process and quantifying recharge are critical for effective water resources management,particularly in arid and semi-arid regions.However,factors influencing on recharge process under different land use types in irrigation districts remain unclear.In this study,a Brilliant Blue FCF dye tracer experiment was conducted to investigate infiltration pathways under the cotton field,pear orchard,and bare land conditions in the Kongque Rive Irrigation District of Xinjiang,China.Recharge rates were estimated using the chloride mass balance method.The results show that the average preferential flow ratio was highest in the bare land(50.42%),followed by the cotton field(30.09%)and pear orchard(23.59%).Matrix flow was the dominant infiltration pathway in the pear orchard and cotton field.Irrigation method was a primary factor influencing recharge rates,with surface irrigation promoting deeper infiltration compared to drip irrigation.Under the drip irrigation mode,the recharge of cotton fields ranged from 23.47 mm/a to 59.16 mm/a.In comparison,the recharge of surface irrigation in pear orchards contributed between 154.30 mm/a and 401.65 mm/a.These findings provide valuable insights into soil water infiltration and recharge processes under typical land use conditions in the Kongque River Irrigation District,supporting improved irrigation management and sustainable water resource utilization.
基金supported by the National Natural Science Foundation of China(No.22309056)the National Key R&.D Program of China(No.2022YFB2404800)+4 种基金the Basic Research Program of Shenzhen Municipal Science and Technology Innovation Committee(No.JCYJ20210324141613032)the Knowledge Innovation Project of Wuhan City(No.2022010801010303)the City University of Hong Kong Strategic Research Grant(SRG),Hong Kong,China(No.7005505)the City University of Hong Kong Donation Research Grant,Hong Kong,China(No.DON-RMG 9229021)the Postdoctoral Fellowship Program of CPSF(No.GZB20230552).
文摘Antimony(Sb)is regarded as a potential candidate for next-generation anode materials for rechargeable batteries because it has a high theoretical specific capacity,excellent conductivity and appropriate reaction potential.However,Sb-based anodes suffer from severe volume expansion of>135%during the lithiation-delithiation process.Hence,we construct a novel Sb@C composite encapsulating the Sb nanoparticles into highly conductive three-dimensional porous carbon frameworks via the one-step magnesiothermic reduction(MR).The porous carbon provides buffer spaces to accommodate the volume expansion of Sb.Meanwhile,the three-dimensional(3D)interconnected carbon frameworks shorten the ion/electron transport pathway and inhibit the overgrowth of unstable solid-electrolyte interfaces(SEIs).Consequently,the 3D Sb@C composite displays remarkable electrochemical performance,including a high average Coulombic efficiency(CE)of>99%,high initial capability of 989 mAh·g^(-1),excellent cycling stability for over 1000 cycles at a high current density of 5 A·g^(-1).Furthermore,employing a similar approach,this 3D Sb@C design paradigm holds promise for broader applications across fast-charging and ultralong-life battery systems beyond Li+.This work aims to advance practical applications for Sb-based anodes in next-generation batteries.
基金supported by the National Natural Science Foundation of China(Nos.U21A20311 and 22409147)。
文摘Energy storage plays a critical role in sustainable development,with secondary batteries serving as vital technologies for efficient energy conversion and utilization.This review provides a comprehensive summary of recent advancements across various battery systems,including lithium-ion,sodium-ion,potassium-ion,and multivalent metal-ion batteries such as magnesium,zinc,calcium,and aluminum.Emerging technologies,including dual-ion,redox flow,and anion batteries,are also discussed.Particular attention is given to alkali metal rechargeable systems,such as lithium-sulfur,lithium-air,sodium-sulfur,sodium-selenium,potassium-sulfur,potassium-selenium,potassium-air,and zinc-air batteries,which have shown significant promise for high-energy applications.The optimization of key components—cathodes,anodes,electrolytes,and interfaces—is extensively analyzed,supported by advanced characterization techniques like time-of-flight secondary ion mass spectrometry(TOF-SIMS),synchrotron radiation,nuclear magnetic resonance(NMR),and in-situ spectroscopy.Moreover,sustainable strategies for recycling spent batteries,including pyrometallurgy,hydrometallurgy,and direct recycling,are critically evaluated to mitigate environmental impacts and resource scarcity.This review not only highlights the latest technological breakthroughs but also identifies key challenges in reaction mechanisms,material design,system integration,and waste battery recycling,and presents a roadmap for advancing high-performance and sustainable battery technologies.
基金supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(16205721)the PolyU Start-up Fund(1-BDC4)。
文摘Dendrite formation and side reactions,which originate from uncontrolled zinc(Zn)nucleation and growth and high water activity,remain the two critical challenges that hinder the practical implementation of Zn anodes for rechargeable aqueous batteries.In this work,we propose a cation and anion comodulation strategy to realize highly textured and durable Zn anodes.As a proof of concept,1-ethyl-1-methylpyrrolidinium bromide(MEPBr)is selected as a versatile additive to regulate Zn deposition.Specifically,MEP^(+)cations with preferential adsorption on tips/edges first promote uniform primary Zn nucleation on the substrate,followed by dynamic“edge shielding”of existing deposits to guide highly oriented Zn growth.Meanwhile,the incorporation of Br^(-)anions promotes the enrichment of Zn^(2+)at the electrode-electrolyte interface(EEI),thereby facilitating Zn deposition kinetics.In addition,both the preferentially adsorbed MEP^(+)cations and Br^(-)anions create a water-poor EEI while the two ionic species disrupt the original hydrogen bond network and reduce water within the solvation structure in the bulk electrolyte through ion-water interactions,thus dramatically reducing water-induced side reactions.As a result,the Zn//Zn symmetric battery with the MEPBr-modulated electrolyte exhibits a remarkable lifespan of over 4000 h at 2 m A cm^(-2)and 1 mA h cm^(-2).More excitingly,the newly designed electrolyte enables a Zn//NaV_(3)O_(8)·1.5H_(2)O full battery with a thin Zn anode(50μm)and a high mass-loading cathode(~10 mg cm^(-2))to operate normally for over 300 cycles with remarkable capacity retention,showcasing its great potential for practical applications.
基金This study was conducted as a part of the IAEA Co-ordinated Research Project(CRP)“Isotope techniques for the evaluation of water sources in irrigation systems(F-33025)”。
文摘Agriculture is a major contributor to the global economy,accounting for approximately 70%of the freshwater use,which cause significant stress on aquifers in intensively irrigated regions.This stress often leads to the decline in both the quantity and quality of groundwater resources.This study is focused on an intensively irrigated region of Northern India to investigate the sources and mechanism of groundwater recharge using a novel integrated approach combining isotope hydrology,Artificial Neural Network(ANN),and hydrogeochemical models.The study identifies several key sources of groundwater recharge,including natural precipitation,river infiltration,Irrigation Return Flow(IRF),and recharge from canals.Some groundwater samples exhibit mixing from various sources.Groundwater recharge from IRF is found to be isotopically enriched due to evaporation and characterized by high Cl−.Stable isotope modeling of evaporative enrichment in irrigated water helped to differentiate the IRF during various cultivation periods(Kharif and Rabi)and deduce the climatic conditions prevailed during the time of recharge.The model quantified that 29%of the irrigated water is lost due to evaporation during the Kharif period and 20%during the Rabi period,reflecting the seasonal variations in IRF contribution to the groundwater.The ANN model,trained with isotope hydrogeochemical data,effectively captures the complex interrelationships between various recharge sources,providing a robust framework for understanding the groundwater dynamics in the study area.A conceptual model was developed to visualize the spatial and temporal distribution of recharge sources,highlighting how seasonal irrigation practices influence the groundwater.The integration of isotope hydrology with ANN methodologies proved to be effective in elucidating the multiple sources and processes of groundwater recharge,offering insights into the sustainability of aquifer systems in intensively irrigated regions.These findings are critical for developing data-driven groundwater management strategies that can adapt to future challenges,including climate change,shifting land use patterns,and evolving agricultural demands.The results have significant implications for policymakers and water resource managers seeking to ensure sustainable groundwater use in water-scarce regions.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,22379080,Major Basic Research Program of Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059the Postdoctoral Program in Qingdao under No.QDBSH20220202019.
文摘Designing cathode possessing crystalline@amorphous core-shell structure with both active core and shell is a meaningful work for resolving the low specific capacity,unstable cycling performance and sluggish reaction kinetics issues of rechargeable magnesium batteries(RMBs)by providing more active sites as well as releasing inner stress during cycling.Herein,WO_(3)@WO_(3-x)S_(x) owning crystalline@amorphous core-shell structure containing both active core and active shell is constructed successfully by introducing S into metastable WO3 structure under temperaturefield applying.In such structure,amorphous shell would provide continuous Mg^(2+)diffusion channels due to its isotropy property for most Mg^(2+)migrating rapidly to interface and then adsorb at ions reservoir formed by interfacial electricfield for increasing specific capacity.It also makes security for stable structure of WO_(3)@WO_(3-x)S_(x) by alleviating volume expansion of crystalline core WO_(3) during cycling to prolong cycling life.Additionally,“softer”ions S^(2-)would weaken interaction between hard acid Mg^(2+) and ionic lattice to enhance Mg^(2+)storage kinetics.Therefore,WO_(3)@WO_(3-x)S_(x) delivers the superior cycling performance(1000 cycles with 83.3%),rate capability(88.5 mAh g^(-1) at 1000 mA g^(-1))and specific capacity(about 150 mAh g^(-1) at 50 mA g^(-1)),which is near 2 times higher than that of WO3.It is believed that the crystalline@amorphous core-shell structure with both active core and shell designing via doping strategy is enlightening for the development of high-performance RMBs,and such design can be extended to other energy storage devices for better electrochemical performance.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region,China(N_PolyU559/21)a grant from the National Natural Science Foundation of China(52161160333)+1 种基金a grant from the Research Institute for Smart Energy at The Hong Kong Polytechnic University(CDB2)supported by the Hong Kong PhD Fellowship Scheme(PF21-65328).
文摘The growing severity of environmental challenges has accelerated advancements in renewable energy technologies,highlighting the critical need for efficient energy storage solutions.Rechargeable batteries,as primary short-term energy storage devices,have seen significant progress.Among emerging optimization strategies,high-entropy electrolytes have garnered attention for their superior ionic conductivity and ability to broaden batteries’operational temperature ranges.Rooted in the thermodynamic concept of entropy,high-entropy materials,originally exemplified by high-entropy alloys,have demonstrated enhanced structural stability and advanced electrochemical performance through the synergistic integration of multiple components.High-entropy liquid electrolytes,both aqueous and non-aqueous,offer unique opportunities for entropy manipulation due to their inherently disordered structures.However,their complex compositions present challenges,as minor changes in formulation can lead to significant performance variations.This review introduces the fundamentals of entropy tuning,surveys recent advances in high-entropy liquid electrolytes,and analyzes the interplay between entropy and electrochemical behavior.Finally,it discusses design strategies and future perspectives for the practical implementation of high-entropy liquid electrolytes in next-generation energy storage systems.
基金financially supported by the German Research Foundation DFG project(LI 2839/1-1),under DFG Project ID 390874152(POLiS Cluster of ExcellenceFurther funding from EU research and innovation framework programme via“HighMag”project(ID:824066).
文摘1.Motivation.There is an increasing demand for rechargeable batteries in high-performance energy storage systems.The current dominating Li ion batteries are limited by price fluctuations of resources,resource availability,as well as their theoretical capacities so that the community is exploring alternative battery chemistries to expand the portfolio of available battery types.
基金supported by National Natural Science Foundation of China(62474019)Beijing Natural Science Foundation(L223006)BIT Research and Innovation Promoting Project(2024YCXY001).
文摘Thermoelectric technology that utilizes thermodynamic effects to convert thermal energy into electrical energy has greatly expanded wearable health monitoring,personalized detecting,and communicating applications.Encouragingly,thermoelectric technology assisted by artificial intelligence exerts great development potential in wearable electronic devices that rely on the self-sustainable operation of human body heat.Ionic thermoelectric(i-TE)devices that possess high Seebeck coefficients and a constant and stable electrical output are expected to achieve an effective conversation of thermal energy harvesting.Herein,we developed an i-TE paster for thermal chargeable energy storage,temperature-triggered material recognition,contact/non-contact temperature detection,and photo thermoelectric conversion applications.An all-solid-state organic ionic gel electrolyte(PVDF-HFP-PEO gel)with onion epidermal cells-like structure was sandwiched between two electrodes,which take full advantage of a synergy between the Soret effect and the polymer thermal expansion effect,thus achieving the enhanced ZT value up to 900%compared with the PEO-free electrolyte.The i-TE device delivers a Seebeck coefficient of 28 mV K^(−1),a maximum energy conversion efficiency of 1.3%in performance,and ultra-thin and skin-attachable properties in wearability,which demonstrate the great potential and application prospect of the i-TE paster in self-sustainable wearable electronics.
基金funded by National Natural Science Foundation of China(No.61741303)Guangxi Natural Science Foundation(No.2017GXNSFAA198161)the Foundation Project of Guangxi Key Laboratory of Spatial Information and Mapping(No.21-238-21-16).
文摘In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.