期刊文献+

Cation and anion co-modulated electrolytes enable highly textured and reversible zinc anodes for durable aqueous batteries

在线阅读 下载PDF
导出
摘要 Dendrite formation and side reactions,which originate from uncontrolled zinc(Zn)nucleation and growth and high water activity,remain the two critical challenges that hinder the practical implementation of Zn anodes for rechargeable aqueous batteries.In this work,we propose a cation and anion comodulation strategy to realize highly textured and durable Zn anodes.As a proof of concept,1-ethyl-1-methylpyrrolidinium bromide(MEPBr)is selected as a versatile additive to regulate Zn deposition.Specifically,MEP^(+)cations with preferential adsorption on tips/edges first promote uniform primary Zn nucleation on the substrate,followed by dynamic“edge shielding”of existing deposits to guide highly oriented Zn growth.Meanwhile,the incorporation of Br^(-)anions promotes the enrichment of Zn^(2+)at the electrode-electrolyte interface(EEI),thereby facilitating Zn deposition kinetics.In addition,both the preferentially adsorbed MEP^(+)cations and Br^(-)anions create a water-poor EEI while the two ionic species disrupt the original hydrogen bond network and reduce water within the solvation structure in the bulk electrolyte through ion-water interactions,thus dramatically reducing water-induced side reactions.As a result,the Zn//Zn symmetric battery with the MEPBr-modulated electrolyte exhibits a remarkable lifespan of over 4000 h at 2 m A cm^(-2)and 1 mA h cm^(-2).More excitingly,the newly designed electrolyte enables a Zn//NaV_(3)O_(8)·1.5H_(2)O full battery with a thin Zn anode(50μm)and a high mass-loading cathode(~10 mg cm^(-2))to operate normally for over 300 cycles with remarkable capacity retention,showcasing its great potential for practical applications.
出处 《Journal of Energy Chemistry》 2025年第7期688-698,共11页 能源化学(英文版)
基金 supported by the Research Grants Council of the Hong Kong Special Administrative Region,China(16205721) the PolyU Start-up Fund(1-BDC4)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部