Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal patter...Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal pattern,several freedoms must be constrained.A new pattern synthesis approach based on the improved genetic algorithm(GA) using the least square fitness estimation(LSFE) method is proposed.Parameters optimized by this method include antenna locations,stimulus states and phase weights.The new algorithm demonstrates that the fitness variation tendency of GA can be effectively predicted after several "eras" by the LSFE method.It is shown that by comparing the variation of LSFE curve slope,the GA operator can be adaptively modified to avoid premature convergence of the algorithm.The validity of the algorithm is verified using computer implementation.展开更多
A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal...A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal or radar hardware failures in CINRAD (China New Generation Weather Radar) SA and SB radar operational observations are investigated.In order to distinguish the test pattern from other types of radar echoes,such as precipitation,clear air and other non-meteorological echoes,five feature parameters including the effective reflectivity data percentage (Rz),velocity RF (range folding) data percentage (RRF),missing velocity data percentage (RM),averaged along-azimuth reflectivity fluctuation (RNr,z) and averaged along-beam reflectivity fluctuation (RNa,z) are proposed.Based on the fuzzy logic method,a test pattern identification algorithm is developed,and the statistical results from all the different kinds of radar echoes indicate the performance of the algorithm.Analysis of two typical cases with heavy precipitation echoes located inside the test pattern are performed.The statistical results show that the test pattern identification algorithm performs well,since the test pattern is recognized in most cases.Besides,the algorithm can effectively remove the test pattern signal and retain strong precipitation echoes in heavy rainfall events.展开更多
This work develops a system to visualize the information for radar systems interfaces. It is a flexible, portable software system that allows to be used for radars that have different technologies and that is able to ...This work develops a system to visualize the information for radar systems interfaces. It is a flexible, portable software system that allows to be used for radars that have different technologies and that is able to be adapted to the specific needs of each application domain in an efficient way. Replacing the visualization and processing units on existing radar platforms by this new system, a practical and inexpensive improvement is achieved.展开更多
In this paper, it is proved the ability of quantity reconstruction, amplitudes and coordinates of metallic strip local scattering sources from the backscattering pattern. They are performed as the results of numerical...In this paper, it is proved the ability of quantity reconstruction, amplitudes and coordinates of metallic strip local scattering sources from the backscattering pattern. They are performed as the results of numerical solution for the infinite perfect conducting strip in case of E-polarization of the incident plane electromagnetic wave. In this case it is necessary to fulfill the following conditions. The local sources amplitudes should be the same order, in transverse and longitudinal directions the local sources should be separated into distances more than apparatus resolution, and the object maximum size does not have to be more than approximately 50λ. It was shown the limit and ability of the further development of the offered method.展开更多
Radar Cross Section (RCS) is one of the most considerable parameters for ship stealth design. As modern ships are larger than their predecessors, RCS must be managed at each design stage for its reduction. For predict...Radar Cross Section (RCS) is one of the most considerable parameters for ship stealth design. As modern ships are larger than their predecessors, RCS must be managed at each design stage for its reduction. For predicting RCS of ship, Radar Cross Section Analysis Program (RACSAN) based on Kirchhoff approximation in high frequency range has been developed. This program can present RCS including multi-bounce effect in exterior and interior structure by combination of geometric optics (GO) and physical optics (PO) methods, coating effect by using Fresnel reflection coefficient, and response time pattern for detected target. In this paper, RCS calculations of ship model with above effects are simulated by using this developed program and RCS results are discussed.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61071164)
文摘Pattern synthesis in 3-D opportunistic digital array radar(ODAR) becomes complex when a multitude of antennas are considered to be randomly distributed in a three dimensional space.In order to obtain an optimal pattern,several freedoms must be constrained.A new pattern synthesis approach based on the improved genetic algorithm(GA) using the least square fitness estimation(LSFE) method is proposed.Parameters optimized by this method include antenna locations,stimulus states and phase weights.The new algorithm demonstrates that the fitness variation tendency of GA can be effectively predicted after several "eras" by the LSFE method.It is shown that by comparing the variation of LSFE curve slope,the GA operator can be adaptively modified to avoid premature convergence of the algorithm.The validity of the algorithm is verified using computer implementation.
基金supported by the National Key Program for Developing Basic Sciences under Grant 2012CB417202the National Natural Science Foundation of China under Grant No. 41175038, No. 41305088 and No. 41075023+4 种基金the Meteorological Special Project "Radar network observation technology and QC"the CMA Key project "Radar Operational Software Engineering"the Chinese Academy of Meteorological Sciences Basic ScientificOperational Projects "Observation and retrieval methods of micro-physics and dynamic parameters of cloud and precipitation with multi-wavelength Remote Sensing"Project of the State Key Laboratory of Severe Weather grant 2012LASW-B04
文摘A variety of faulty radar echoes may cause serious problems with radar data applications,especially radar data assimilation and quantitative precipitation estimates.In this study,"test pattern" caused by test signal or radar hardware failures in CINRAD (China New Generation Weather Radar) SA and SB radar operational observations are investigated.In order to distinguish the test pattern from other types of radar echoes,such as precipitation,clear air and other non-meteorological echoes,five feature parameters including the effective reflectivity data percentage (Rz),velocity RF (range folding) data percentage (RRF),missing velocity data percentage (RM),averaged along-azimuth reflectivity fluctuation (RNr,z) and averaged along-beam reflectivity fluctuation (RNa,z) are proposed.Based on the fuzzy logic method,a test pattern identification algorithm is developed,and the statistical results from all the different kinds of radar echoes indicate the performance of the algorithm.Analysis of two typical cases with heavy precipitation echoes located inside the test pattern are performed.The statistical results show that the test pattern identification algorithm performs well,since the test pattern is recognized in most cases.Besides,the algorithm can effectively remove the test pattern signal and retain strong precipitation echoes in heavy rainfall events.
文摘This work develops a system to visualize the information for radar systems interfaces. It is a flexible, portable software system that allows to be used for radars that have different technologies and that is able to be adapted to the specific needs of each application domain in an efficient way. Replacing the visualization and processing units on existing radar platforms by this new system, a practical and inexpensive improvement is achieved.
文摘In this paper, it is proved the ability of quantity reconstruction, amplitudes and coordinates of metallic strip local scattering sources from the backscattering pattern. They are performed as the results of numerical solution for the infinite perfect conducting strip in case of E-polarization of the incident plane electromagnetic wave. In this case it is necessary to fulfill the following conditions. The local sources amplitudes should be the same order, in transverse and longitudinal directions the local sources should be separated into distances more than apparatus resolution, and the object maximum size does not have to be more than approximately 50λ. It was shown the limit and ability of the further development of the offered method.
文摘Radar Cross Section (RCS) is one of the most considerable parameters for ship stealth design. As modern ships are larger than their predecessors, RCS must be managed at each design stage for its reduction. For predicting RCS of ship, Radar Cross Section Analysis Program (RACSAN) based on Kirchhoff approximation in high frequency range has been developed. This program can present RCS including multi-bounce effect in exterior and interior structure by combination of geometric optics (GO) and physical optics (PO) methods, coating effect by using Fresnel reflection coefficient, and response time pattern for detected target. In this paper, RCS calculations of ship model with above effects are simulated by using this developed program and RCS results are discussed.