Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undef...Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undefined.This study systematically evaluated the temporal-specific impacts of dietary Pro supplementation during critical phases of fetal myogenesis(encompassing primary myofiber formation and secondary myofiber hyperplasia)on offspring muscle development.A total of 120 sows with similar farrowing schedules were assigned to three groups:CON(basal diet),ST-Pro(0.5%Pro supplementation during secondary myofiber formation period,from d 60 gestation to farrowing),LT-Pro(0.5%Pro supplementation spanning primary and secondary myofiber formation period:from d 20 gestation to farrowing).Results LT-Pro group significantly increased the longissimus dorsi(LD)muscle mass per unit body weight in newborn piglets compared to CON group(P<0.05),while no such effect was observed in the ST-Pro group.Metabolomic profiling revealed elevated Pro,lysine,and tryptophan levels in the LD muscle of LT-Pro group piglets,accompanied by reduced branched-chain amino acids(BCAAs;leucine,isoleucine,and valine)in both serum and muscle(P<0.05).Histological analysis demonstrated a 45.74%increase in myofiber cross-sectional area in the LT-Pro group(P<0.05).At the molecular level,LT-Pro group piglets exhibited upregulated mRNA expression levels of myogenic regulatory genes(MYOD1,MYF6)and the cell cycle accelerator CCND1(P<0.05),coupled with activation of the STAT3 signaling pathway(phosphorylated STAT3 protein increased by 2.53-fold,P<0.01).Furthermore,Pro supplementation enhanced oxidative metabolism,evidenced by elevated mitochondrial biogenesis markers(the mRNA expression levels of PPARGC1A,OPA1,and SQSTM1)and a 61.58%increase in succinate dehydrogenase activity(P<0.05).Notably,LT-Pro group piglets showed a selective shift toward slow-twitch oxidative fibers,with both MyHC1 mRNA and protein expression levels significantly upregulated(P<0.05),while the mRNA expression levels of MyHCIIb showed no significant change.Conclusions This study identified the primary fiber formation period as a critical window.Supplementation with Pro during G20–114 reprogrammed offspring skeletal muscle development through STAT3-CCND1-mediated myoblast proliferation,enhanced mitochondrial bioenergetics,and oxidative fiber specification.However,no such effects were observed during G60–114.These findings propose maternal Pro intervention as a novel strategy to enhance muscle yield and metabolic efficiency in swine production,with potential applications for improving meat quality traits linked to oxidative muscle phenotypes.展开更多
Background Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products.To enhance the comprehensive utili...Background Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products.To enhance the comprehensive utilization capability of saline-alkaline water,it is necessary to understand the regulatory mechanisms of aquatic animals coping with saline-alkaline water.In this study,our objective was to elucidate the function of proline metabolism in the alkaline adaptation of Nile tilapia(Oreochromis niloticus).Results Expose Nile tilapia to alkaline water of different alkalinity for 2 weeks to observe changes in its growth performance and proline metabolism.Meanwhile,to further clarify the role of proline metabolism,RNA interference experiments were conducted to disrupt the normal operation of proline metabolic axis by knocking down pycr(pyrroline-5-carboxylate reductases),the final rate-limiting enzyme in proline synthesis.The results showed that both the synthesis and degradation of proline were enhanced under carbonate alkalinity stress,and the environmental alkalinity impaired the growth performance of tilapia,and the higher the alkalinity,the greater the impairment.Moreover,environmental alkalinity caused oxidative stress in tilapia,enhanced ion transport,ammonia metabolism,and altered the intensity and form of energy metabolism in tilapia.When the expression level of the pycr gene decreased,the proline metabolism could not operate normally,and the ion transport,antioxidant defense system,and energy metabolism were severely damaged,ultimately leading to liver damage and a decreased survival rate of tilapia under alkalinity stress.Conclusions The results indicated that proline metabolism plays an important role in the alkaline adaptation of Nile tilapia and is a key regulatory process in various biochemical and physiological processes.展开更多
Exogenous proline is an effective agent for increasing plant tolerance to abiotic stress in plants. In this study, we evaluated its effect on seedlings of Siete Caldos chili pepper (Capsicum frutescens), a semi-domest...Exogenous proline is an effective agent for increasing plant tolerance to abiotic stress in plants. In this study, we evaluated its effect on seedlings of Siete Caldos chili pepper (Capsicum frutescens), a semi-domesticated variety. The Capsicum genus is known for its sensitivity to water stress. We pretreated the seedlings’ roots by immersing them in proline solutions (0, 2.5, 5, 7.5, and 10 mM) for 48 h. Then, we exposed them to water stress using a Hoagland nutrient solution supplemented with 10% polyethylene glycol (PEG-8000) for nine days. We analyzed key physiological and biochemical parameters, including relative water content, cell membrane stability index, electrolyte leakage, chlorophyll, and proline content. The results indicated that proline concentrations of 2.5 and 5 mM significantly increased tolerance to water stress, with 100% survival. These seedlings maintained greater hydration and cell membrane stability compared to non-pretreated seedlings. In contrast, at the highest concentrations (7.5 and 10 mM Pro), survival was 63.63% and 54.54%, respectively. This study demonstrated that exogenous proline enhances water stress tolerance in Capsicum frutescens seedlings by mitigating the negative impact on physiological and biochemical processes vital for survival. This theoretical foundation can be applied to improve chili seedling performance in controlled production environments.展开更多
Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological funct...Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a potential prognostic biomarker,indicating a poor prognosis in HCC.展开更多
Proline is one of the most important and widespread osmolyte which functions in adaptation to adverse environmental stresses in many organisms. Also it is an important carbon and nitrogen resource in higher plants. Me...Proline is one of the most important and widespread osmolyte which functions in adaptation to adverse environmental stresses in many organisms. Also it is an important carbon and nitrogen resource in higher plants. Metabolism of proline has been elucidated in many plant species. However, transport of proline was poorly characterized although transport system plays an important role in proline distribution in different tissues. We isolated one full_length cDNA encoding proline transporter from the typical halophyte: Atriplex hortensis L. through cDNA library screening and 5′_RACE. The deduced amino acid sequence had eleven transmembrane domains, showed 60%-69% similarities to other ProTs and the gene was designated AhProT1. In the phylogenetic tree, higher plants' ProTs, e.g. AhProT1, showed more similar to ProP from microorganisms than ProT from mammalians. AhProT1 gene was transformed into Arabidopsis thaliana under 35S promoter. In MS medium containing [U_ 14 C] proline, AhProT1 + plants were able to accumulate much more radiolabeled proline in the roots than control plants. In MS medium containing different concentrations of NaCl, AhProT1 + plants could endure 200 mmol/L NaCl and keep development and biomass increase with proline supply, whereas control plants died back at 150 mmol/L NaCl.展开更多
C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->...C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.展开更多
[Objective] To select excellent pioneer species of better ecological and economical comprehensive benefits from the common rock hill plants in Karst area in northwestern Guangxi Province.[Method] Determine the content...[Objective] To select excellent pioneer species of better ecological and economical comprehensive benefits from the common rock hill plants in Karst area in northwestern Guangxi Province.[Method] Determine the contents of malondialdehyde and proline in leaves of 65 strains of plants by thiobarbituric acid method and sultosalicylic acid method,analyze the relevance of the contents of malondialdehyde and proline by mathematics statistics and analyze the 65 kinds of rock hill plants by clustering [Result] The contents of malondialdehyde and proline are 0.005 2-0.038 1 μmol/g.There are comparably significant differences in the contents of malondialdehyde in different plants;The determination of proline contents in plant's leaves are 4.347-374.956 μg/ml.There are also significant differences in proline of different leaves of rock hill plants.The contents of malondialdehyde and proline can be used as a reference point in selecting pioneer plants in Karst area.But when we select the pioneer plants,not only the biological characters of the species themselves should be taken into consideration,but also the differences of Karst area environment,ecological and biological benefits and the reasonable distribution of species.[Conclusion] Pistacia chinensis,Zenia insignis,Acacia confusa,Itoa orientalis and Sophora japonica can be used as the first choices of excellent pioneer plants in Karst area in northwestern area which comparably consists with the real situation of afforestation of rock hills and recovery of plants in Guangxi.展开更多
Ma's CuI/proline procedure for the catalytic cross coupling between nitrogen heterocycles and aryl halides was markedly improved. The key finding was that K3PO4 was a much better base than K2CO3 for the reaction. Wit...Ma's CuI/proline procedure for the catalytic cross coupling between nitrogen heterocycles and aryl halides was markedly improved. The key finding was that K3PO4 was a much better base than K2CO3 for the reaction. With this new reaction condition the cross coupling with aryl iodides could be accomplished in 1,4-dioxane instead of DMSO. This reactin also could be carried out in DMF. Furthermore, the coupling yields under the new conditions are usually higher than in Ma's original methods.展开更多
Allium stracheyi(Baker)is widely utilized as a culinary herb and is typically encountered in the higher elevations of the Himalayas.Consequently,it is of great significance to compare the ecological adaptability of th...Allium stracheyi(Baker)is widely utilized as a culinary herb and is typically encountered in the higher elevations of the Himalayas.Consequently,it is of great significance to compare the ecological adaptability of this indigenous species to alternative habitats and its introduction into new environments.This research aims to investigate and gain a comprehensive understanding of A.stracheyi,also known as faran,in Uttarakhand region.We aim to examine how this plant adapts morphologically,physiologically,biochemically,and anatomically to varying elevations,specifically at 550,2200,2460,and 3400 m above mean sea level(m AMSL).This plant demonstrated remarkable morphophysiological adjustments across various aspects of its development,encompassing modified growth patterns,alterations in leaf dimensions,leaf count,etc..Moreover,biochemical adaptations have been identified as pivotal in bolstering the plant resilience to the stress associated with higher elevation.Enzymes like superoxide dismutase(SOD)and peroxidase(POD)exhibited significant responsiveness to elevational variations,contributing to the plant's ability to confront the challenges posed by high-elevational conditions.In terms of anatomy,the plant manifested alterations in its leaf and vascular tissues along the elevational gradient.These modifications involve an increased density of stomata and a greater count of vascular bundles,optimizing gas exchange and adaptation to water stress in frequently encountered harsh environmental conditions at higher elevations.Understanding the adaptive mechanisms employed by A.stracheyi provides valuable insights,especially in forecasting how A.stracheyi might respond to global climate change,particularly in regions affected by habitat fragmentation.展开更多
Peanut(Arachis hypogaea)is of international importance as a source of oil and protein.Soil salinity is one of themost significant abiotic stress factors affecting the yield and quality of peanuts.This study evaluated ...Peanut(Arachis hypogaea)is of international importance as a source of oil and protein.Soil salinity is one of themost significant abiotic stress factors affecting the yield and quality of peanuts.This study evaluated the potential of a seaweed-based biostimulant to enhance emergence and seedling growth of four peanut cultivars(‘Ayse Hanım’,‘Halis Bey’,‘NC-7’,and‘Albenek’)under increasing salinity levels.The experiment was conducted under greenhouse conditions using a randomized complete block design with four replicates.Seeds were sown in trays and treated with two doses of seaweed extract(0 and 5 g L^(-1))applied directly to the seedbed.Salinity stress was induced by dissolving NaCl in distilled water used for weekly irrigation over six weeks,with salinity levels set at:S_(0):Control,S_(1):50mMNaCl,S_(2):100 mM NaCl,S_(3):150 mM NaCl,and S_(4):200 mM NaCl.Emergence percentage,mean emergence time,shoot and root length,fresh and dry biomass,chlorophyll content,proline,crude protein,and macro-and micronutrient concentrations(Ca,K,P,Mg,Zn,Mn,Cu,and Fe)were measured.The results revealed significant differences between treatments.Seaweed applications showed notable improvements in measured parameters of each variety compared to the salt treated and un-treated control plants of each variety.As salinity stress increased,the emergence percentage,root and shoot length,fresh and dry weight of the plants,crude protein content percentage,leaf chlorophyll contents,Ca,K,P,Mg,Zn,Mn,Cu,and Fe decreased.Similarly,the mean emergence time,and proline contents also decreased with each increase in Na concentration.The best outcomes were obtained in seedlings treated with seaweed under no salinity(0 mM NaCl)and mild salinity(50 mM NaCl)conditions.These findings suggest that seaweeds is an effective biostimulant for improving early-stage growth and stress resilience in peanuts under saline conditions.展开更多
This study evaluates the impact of heavy metals(zinc,copper and cadmium)on the development and metabolic responses of the maize(Zea mays)variety“Torro Plus”.Seeds were cultivated on MS medium enriched with progressi...This study evaluates the impact of heavy metals(zinc,copper and cadmium)on the development and metabolic responses of the maize(Zea mays)variety“Torro Plus”.Seeds were cultivated on MS medium enriched with progressively higher concentrations of heavy metals(50,100 and 150μM),and plants were analyzed after 21 days.The results show a significant reduction in morphological parameters,notably an 87.28%decrease in the fresh weight of aerial parts and a 69.93%decrease in the fresh weight of roots under 150μM of Cd.Chlorophyll a,b and total content also decreased drastically,reaching a maximum reduction of 74.31%under Cd(150μM).In contrast,secondary metabolites such as proline and flavonoids increased,with a maximum proline accumulation of 0.71 mg/g under Cu(150μM)and a flavonoid concentration reaching 176.33 mg/g under Cu(100μM).These results show mechanisms of adaptation to stress,notably the accumulation of flavonoids and proline,while highlighting the increased toxicity of cadmium at high doses.These data are promising for applications in phytoremediation and sustainable agriculture.This study provides important data on the physiological and biochemical responses of plants to heavy metals and opens up prospects for phytoremediation applications.展开更多
Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 μmol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophy...Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 μmol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophyll, protein, proline, nitrate and nitrite reductase, antioxidant enzyme activity in leaves and roots were evaluated after 10 d of cadmium stress. The higher concentration of cadmium (100 μmol/L) resulted (leaves and roots) total chlorophyll 91.01%, protein 79.51%, 83.61%, nitrate reductase 79.39%, 80.72% and nitrite reductase 77.07%, 75.88% activity decreased with increase in cadmium concentrations and exposure periods. Cadmium caused significant changes in the activity of antioxidative enzymes. Contrastingly Cd treated plant tissues showed an increase in proline 159.87%, 239.6%, gluthion reductase (GR) 337.72%, 306.14%, superoxide disumutase (SOD) 688.56%, 381.72%, ascorbate peroxidase (APX) 226.47%, 252.14%, peroxidase (POD) 72.19%, 60.29% and catalase (CAT) 228.96%, 214.74% as compared to control. Cadmium stress caused a significant increase in the rate of SOD activity in leaves and roots of plant species. Results show the crop A. hypogaea is highly sensitive even at very low cadmium concentrations.展开更多
The plants of two elfalfa (Medicago sativa L.) cultivars differing in salt tolerance were subjected to three salt treatments, 70, 140, and 210 mM NaCl for 7 days. Root, shoot, and leaf growths were inhibited by incr...The plants of two elfalfa (Medicago sativa L.) cultivars differing in salt tolerance were subjected to three salt treatments, 70, 140, and 210 mM NaCl for 7 days. Root, shoot, and leaf growths were inhibited by increased salt treatments in both cultivars, and at 140 and 210 mM salt treatments, Zhongmu 1 had significantly higher root, shoot, and leaf dry weights per plant than Deft. The malondialdehyde (MDA) accumulation in Deft was considerably greater than in Zhongmu 1, indicating a higher degree of lipid peroxidation at 140 and 210 mM salt treatments. The changes in the activity and active isoforms of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APOX, EC 1.11,1.11), accumulation of free proline, and rate of lipid peroxidation in leaves of two alfalfa cultivars were also investigated. After stress, the activity and active isoforms of antioxidative enzymes were altered and the extent of alteration varied between the cultivar Deft and Zhongmu 1. The proline accumulation in Deft was considerably greater than in Zhongmu 1 at 210 mM salt treatment. This indicated that proline accumulation may be the result, instead of the cause, of salt tolerance.展开更多
Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato (Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in ...Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato (Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in the biosynthesis of secondary plant metabolites including phytohormones and osmolyte proline under drought stress. Exposure of tomato to drought caused a drastic decline in plant growth and physiological parameters. Tomato inoculated with T. harzianum showed increased root and shoot growth and chlorophyll pigments as compared to uninoculated controls as well as drought stressed plants. Proline and total soluble protein content was increased in plants inoculated with T. harzianum under both normal as well as drought conditions. An obvious increase in phenol and flavonoid content was observed due to T. haczianum. In addition, T. hat-zianum inoculated plants maintained higher levels of growth regulators indole acetic acid, indole butyric acid, and gibberellic acid under drought stress. Improved secondary metabolites which play an important role in plant stress tolerance by T. hat-zianum may have coordinately worked for bringing the growth regulation by protecting membranes from reactive oxygen species (ROS) and enhance plant growth through accessing more nutrients by root system.展开更多
The mechanism of melatonin(MT)induced chilling tolerance in harvested cucumber fruit was investigated at commercial maturity.In this study,cucumber fruits were treated with 100μmol L^(-1) MT at 4℃ and 90% relative h...The mechanism of melatonin(MT)induced chilling tolerance in harvested cucumber fruit was investigated at commercial maturity.In this study,cucumber fruits were treated with 100μmol L^(-1) MT at 4℃ and 90% relative humidity for 15 d of storage.In comparison with the control,cucumber treatment with MT resulted in reduced chilling injury(CI),decreased electrolyte leakage and enhanced firmness.The fruits treated with MT showed higher chlorophyll contents in storage conditions with suppressed chlorophyllase enzyme activity.MT treatment increased arginine decarboxylase(ADC)and ornithine decarboxylase(ODC)enzyme activities.Moreover,enhanced expression of the Cucumis sativus ADC(CsADC)and C.sativus ODC(CsODC)genes resulted in the accumulation of polyamine contents.Similarly,proline levels exhibited higher levels among treated fruits.Meanwhile,the proline synthesizing enzymes △1-pyrroline-5-carboxylate syntheses(P5CS)and ornithine aminotransferase(OAT)were significantly increased,while a catabolic enzyme of proline dehydrogenase(PDH)activity was inhibited by treatment.In addition,MT induced expression of C.sativus OAT(CsOAT)and C.sativus P5CS(CsP5CS)genes.Cucumber fruits treated with MT also exhibited higher γ-aminobutyric acid(GABA)content by enhanced GABA transaminase(GABA-T)and glutamate decarboxylase(GAD)enzyme activities and a higher C.sativus GAD(CsGAD)gene expression.To sum up,the results show that MT treatment enhanced chilling tolerance,which was associated with the regulation of polyamines,as well as proline and γ-aminobutyric acid.展开更多
Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitig...Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitigate CI.Ethylene is known to promote senescence and CI,while 1-methylcyclopropene(1-MCP)is an antagonist that inhibits the effects of ethylene.However,how1-MCP and ethylene affect proline,PA,and NO levels under chilling stress remains unclear.To address these questions,1-MCP(1μL·L^(−1))and ethylene(1μL·L^(−1))treatments were applied to peach fruit.Fruit were stored at 4°C for 28 d,then moved to 25°C for 3 d immediately after cold storage.Peach fruit exhibited CI symptoms after 7 d of cold storage with enhanced electrolyte leakage and malondialdehyde contents.The 1-MCP treatment significantly(P<0.05)restrained peach CI,and fruit did not exhibit CI symptoms until 14 d of cold storage.Proline and PAs in peach under chilling stress weremostly synthesized from glutamate and arginine,which were catalyzed by1-pyrroline-5-carboxylate synthetase and arginine decarboxylase,respectively.1-MCPtreated fruit exhibited higher proline and PA contents and enhanced chilling tolerance compared to the control,while ethylene-treated fruit had lower proline and PA contents and reduced chilling tolerance.Ethylene-treated fruit,which exhibited more severe CI symptoms compared to the control,had significantly(P<0.05)lower NO contents and NO synthase activities.However,NOmay not be a direct acting factor in 1-MCPinduced chilling tolerance,as 1-MCP-treated fruit had lower NO contents and NO synthase activities compared to the control.In conclusion,proline and PA clearly played direct and important roles in 1-MCP-induced peach chilling tolerance,while NO may not be actively involved.展开更多
To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) ...To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) and proline in middle-season rice variety Peiliangyou 93. The synergist could improve the net photosynthetic rate, and coordination between the water loss and the CO2 absorption as well as reduce the harmful effect on photosynthetic process under drought conditions. Under drought, the ABA accumulated massively both in roots and leaves, while the ABA content in roots was far higher than that in leaves. The results indicate that synergist could increase the ABA accumulation, but reduce the proline accumulation in rice plant under drought.展开更多
Proline accumulation has been shown to occur in plants in response to various environmental stresses.Although proline metabolismrelated genes have been functionally characterized,the inter-organ transport of proline i...Proline accumulation has been shown to occur in plants in response to various environmental stresses.Although proline metabolismrelated genes have been functionally characterized,the inter-organ transport of proline in stressed plants remains unclear.In this study,free proline was detected with significant accumulations in the roots,stems,and leaves of watermelon drought-tolerant germplasm M08 and drought-susceptible line Y34 under drought stress.Expression profiling and enzyme activity measurements revealed that ClP5CS1 gene,rather than its paralog ClP5CS2,mainly contributes to the proline synthesis in leaves via the Glu pathway.Additionally,over-expression of the ClP5CS genes significantly enhanced the drought tolerance of transgenic Arabidopsis lines.Furthermore,we confirmed that proline is mainly synthesized in leaves and transported to roots in watermelon under drought stress.Transcriptome and expression analyses revealed that the genes involved in proline metabolism exhibited different expression levels.Specifically,ClP5CS1 was upregulated in leaves and roots,while ClP5CS2 was downregulated under drought stress.Also,415 and 362 differently expressed TFs were identified in roots and leaves,respectively,with the majority upregulated in the former.Ultimately,a model for proline metabolism was proposed.The findings of this study provided new insights into the biosynthesis,transport,and regulatory mechanism of drought-induced proline in plants.展开更多
基金supported by the National Natural Science Foundation of China(32272895 and 32172744).
文摘Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undefined.This study systematically evaluated the temporal-specific impacts of dietary Pro supplementation during critical phases of fetal myogenesis(encompassing primary myofiber formation and secondary myofiber hyperplasia)on offspring muscle development.A total of 120 sows with similar farrowing schedules were assigned to three groups:CON(basal diet),ST-Pro(0.5%Pro supplementation during secondary myofiber formation period,from d 60 gestation to farrowing),LT-Pro(0.5%Pro supplementation spanning primary and secondary myofiber formation period:from d 20 gestation to farrowing).Results LT-Pro group significantly increased the longissimus dorsi(LD)muscle mass per unit body weight in newborn piglets compared to CON group(P<0.05),while no such effect was observed in the ST-Pro group.Metabolomic profiling revealed elevated Pro,lysine,and tryptophan levels in the LD muscle of LT-Pro group piglets,accompanied by reduced branched-chain amino acids(BCAAs;leucine,isoleucine,and valine)in both serum and muscle(P<0.05).Histological analysis demonstrated a 45.74%increase in myofiber cross-sectional area in the LT-Pro group(P<0.05).At the molecular level,LT-Pro group piglets exhibited upregulated mRNA expression levels of myogenic regulatory genes(MYOD1,MYF6)and the cell cycle accelerator CCND1(P<0.05),coupled with activation of the STAT3 signaling pathway(phosphorylated STAT3 protein increased by 2.53-fold,P<0.01).Furthermore,Pro supplementation enhanced oxidative metabolism,evidenced by elevated mitochondrial biogenesis markers(the mRNA expression levels of PPARGC1A,OPA1,and SQSTM1)and a 61.58%increase in succinate dehydrogenase activity(P<0.05).Notably,LT-Pro group piglets showed a selective shift toward slow-twitch oxidative fibers,with both MyHC1 mRNA and protein expression levels significantly upregulated(P<0.05),while the mRNA expression levels of MyHCIIb showed no significant change.Conclusions This study identified the primary fiber formation period as a critical window.Supplementation with Pro during G20–114 reprogrammed offspring skeletal muscle development through STAT3-CCND1-mediated myoblast proliferation,enhanced mitochondrial bioenergetics,and oxidative fiber specification.However,no such effects were observed during G60–114.These findings propose maternal Pro intervention as a novel strategy to enhance muscle yield and metabolic efficiency in swine production,with potential applications for improving meat quality traits linked to oxidative muscle phenotypes.
基金supported by grants from the National Natural Science Foundation of China(No.32172946)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)+1 种基金the Shanghai Rising-Star Program(2022)the Fundamental Research Funds for the Central Universities,ECNU。
文摘Background Saline-alkaline water aquaculture has become a key way to mitigate the reduction of freshwater aquaculture space and meet the increasing global demand for aquatic products.To enhance the comprehensive utilization capability of saline-alkaline water,it is necessary to understand the regulatory mechanisms of aquatic animals coping with saline-alkaline water.In this study,our objective was to elucidate the function of proline metabolism in the alkaline adaptation of Nile tilapia(Oreochromis niloticus).Results Expose Nile tilapia to alkaline water of different alkalinity for 2 weeks to observe changes in its growth performance and proline metabolism.Meanwhile,to further clarify the role of proline metabolism,RNA interference experiments were conducted to disrupt the normal operation of proline metabolic axis by knocking down pycr(pyrroline-5-carboxylate reductases),the final rate-limiting enzyme in proline synthesis.The results showed that both the synthesis and degradation of proline were enhanced under carbonate alkalinity stress,and the environmental alkalinity impaired the growth performance of tilapia,and the higher the alkalinity,the greater the impairment.Moreover,environmental alkalinity caused oxidative stress in tilapia,enhanced ion transport,ammonia metabolism,and altered the intensity and form of energy metabolism in tilapia.When the expression level of the pycr gene decreased,the proline metabolism could not operate normally,and the ion transport,antioxidant defense system,and energy metabolism were severely damaged,ultimately leading to liver damage and a decreased survival rate of tilapia under alkalinity stress.Conclusions The results indicated that proline metabolism plays an important role in the alkaline adaptation of Nile tilapia and is a key regulatory process in various biochemical and physiological processes.
文摘Exogenous proline is an effective agent for increasing plant tolerance to abiotic stress in plants. In this study, we evaluated its effect on seedlings of Siete Caldos chili pepper (Capsicum frutescens), a semi-domesticated variety. The Capsicum genus is known for its sensitivity to water stress. We pretreated the seedlings’ roots by immersing them in proline solutions (0, 2.5, 5, 7.5, and 10 mM) for 48 h. Then, we exposed them to water stress using a Hoagland nutrient solution supplemented with 10% polyethylene glycol (PEG-8000) for nine days. We analyzed key physiological and biochemical parameters, including relative water content, cell membrane stability index, electrolyte leakage, chlorophyll, and proline content. The results indicated that proline concentrations of 2.5 and 5 mM significantly increased tolerance to water stress, with 100% survival. These seedlings maintained greater hydration and cell membrane stability compared to non-pretreated seedlings. In contrast, at the highest concentrations (7.5 and 10 mM Pro), survival was 63.63% and 54.54%, respectively. This study demonstrated that exogenous proline enhances water stress tolerance in Capsicum frutescens seedlings by mitigating the negative impact on physiological and biochemical processes vital for survival. This theoretical foundation can be applied to improve chili seedling performance in controlled production environments.
文摘Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a potential prognostic biomarker,indicating a poor prognosis in HCC.
文摘Proline is one of the most important and widespread osmolyte which functions in adaptation to adverse environmental stresses in many organisms. Also it is an important carbon and nitrogen resource in higher plants. Metabolism of proline has been elucidated in many plant species. However, transport of proline was poorly characterized although transport system plays an important role in proline distribution in different tissues. We isolated one full_length cDNA encoding proline transporter from the typical halophyte: Atriplex hortensis L. through cDNA library screening and 5′_RACE. The deduced amino acid sequence had eleven transmembrane domains, showed 60%-69% similarities to other ProTs and the gene was designated AhProT1. In the phylogenetic tree, higher plants' ProTs, e.g. AhProT1, showed more similar to ProP from microorganisms than ProT from mammalians. AhProT1 gene was transformed into Arabidopsis thaliana under 35S promoter. In MS medium containing [U_ 14 C] proline, AhProT1 + plants were able to accumulate much more radiolabeled proline in the roots than control plants. In MS medium containing different concentrations of NaCl, AhProT1 + plants could endure 200 mmol/L NaCl and keep development and biomass increase with proline supply, whereas control plants died back at 150 mmol/L NaCl.
文摘C-14-glutamate and C-14-arginine were spreaded on leaves of six-day old barley (Hordeum vulgare L.) seedlings that were treated with NaCl 200 mmol/L. The result showed that the pathway of arginine-->ornithine-->proline existed in the six-day old barley seedlings and was provoked remarkably by NaCl treatment. After seven days, proline accumulation contributed via the arginine-->ornithine-->proline pathway was 1.0 - 1.5 folds of that via the glutamate-->proline pathway. The activation of arginine-->ornithine-->proline pathway by salt stress in the salt-tolerant cultivar 'Jian 4' was 1.7 - 2.0 folds of that in the salt-sensitive cultivar 'KP 7', which suggested that the activation of arginine-->ornithine-->proline pathway in barley seedlings played an important role in improving salt tolerance of plants.
基金Supported by Natural Science Foundation of Guangxi(Guangxi Sci-ence8032273)Key Laboratory of Colleges and Universities.(Guangxi Education and Scientific Research NO.2010[6])~~
文摘[Objective] To select excellent pioneer species of better ecological and economical comprehensive benefits from the common rock hill plants in Karst area in northwestern Guangxi Province.[Method] Determine the contents of malondialdehyde and proline in leaves of 65 strains of plants by thiobarbituric acid method and sultosalicylic acid method,analyze the relevance of the contents of malondialdehyde and proline by mathematics statistics and analyze the 65 kinds of rock hill plants by clustering [Result] The contents of malondialdehyde and proline are 0.005 2-0.038 1 μmol/g.There are comparably significant differences in the contents of malondialdehyde in different plants;The determination of proline contents in plant's leaves are 4.347-374.956 μg/ml.There are also significant differences in proline of different leaves of rock hill plants.The contents of malondialdehyde and proline can be used as a reference point in selecting pioneer plants in Karst area.But when we select the pioneer plants,not only the biological characters of the species themselves should be taken into consideration,but also the differences of Karst area environment,ecological and biological benefits and the reasonable distribution of species.[Conclusion] Pistacia chinensis,Zenia insignis,Acacia confusa,Itoa orientalis and Sophora japonica can be used as the first choices of excellent pioneer plants in Karst area in northwestern area which comparably consists with the real situation of afforestation of rock hills and recovery of plants in Guangxi.
文摘Ma's CuI/proline procedure for the catalytic cross coupling between nitrogen heterocycles and aryl halides was markedly improved. The key finding was that K3PO4 was a much better base than K2CO3 for the reaction. With this new reaction condition the cross coupling with aryl iodides could be accomplished in 1,4-dioxane instead of DMSO. This reactin also could be carried out in DMF. Furthermore, the coupling yields under the new conditions are usually higher than in Ma's original methods.
基金supported by Uttarakhand Council for Biotechnology(grant number UCB/R&D PROJECT/2022/20 dated 06.05.2022).
文摘Allium stracheyi(Baker)is widely utilized as a culinary herb and is typically encountered in the higher elevations of the Himalayas.Consequently,it is of great significance to compare the ecological adaptability of this indigenous species to alternative habitats and its introduction into new environments.This research aims to investigate and gain a comprehensive understanding of A.stracheyi,also known as faran,in Uttarakhand region.We aim to examine how this plant adapts morphologically,physiologically,biochemically,and anatomically to varying elevations,specifically at 550,2200,2460,and 3400 m above mean sea level(m AMSL).This plant demonstrated remarkable morphophysiological adjustments across various aspects of its development,encompassing modified growth patterns,alterations in leaf dimensions,leaf count,etc..Moreover,biochemical adaptations have been identified as pivotal in bolstering the plant resilience to the stress associated with higher elevation.Enzymes like superoxide dismutase(SOD)and peroxidase(POD)exhibited significant responsiveness to elevational variations,contributing to the plant's ability to confront the challenges posed by high-elevational conditions.In terms of anatomy,the plant manifested alterations in its leaf and vascular tissues along the elevational gradient.These modifications involve an increased density of stomata and a greater count of vascular bundles,optimizing gas exchange and adaptation to water stress in frequently encountered harsh environmental conditions at higher elevations.Understanding the adaptive mechanisms employed by A.stracheyi provides valuable insights,especially in forecasting how A.stracheyi might respond to global climate change,particularly in regions affected by habitat fragmentation.
文摘Peanut(Arachis hypogaea)is of international importance as a source of oil and protein.Soil salinity is one of themost significant abiotic stress factors affecting the yield and quality of peanuts.This study evaluated the potential of a seaweed-based biostimulant to enhance emergence and seedling growth of four peanut cultivars(‘Ayse Hanım’,‘Halis Bey’,‘NC-7’,and‘Albenek’)under increasing salinity levels.The experiment was conducted under greenhouse conditions using a randomized complete block design with four replicates.Seeds were sown in trays and treated with two doses of seaweed extract(0 and 5 g L^(-1))applied directly to the seedbed.Salinity stress was induced by dissolving NaCl in distilled water used for weekly irrigation over six weeks,with salinity levels set at:S_(0):Control,S_(1):50mMNaCl,S_(2):100 mM NaCl,S_(3):150 mM NaCl,and S_(4):200 mM NaCl.Emergence percentage,mean emergence time,shoot and root length,fresh and dry biomass,chlorophyll content,proline,crude protein,and macro-and micronutrient concentrations(Ca,K,P,Mg,Zn,Mn,Cu,and Fe)were measured.The results revealed significant differences between treatments.Seaweed applications showed notable improvements in measured parameters of each variety compared to the salt treated and un-treated control plants of each variety.As salinity stress increased,the emergence percentage,root and shoot length,fresh and dry weight of the plants,crude protein content percentage,leaf chlorophyll contents,Ca,K,P,Mg,Zn,Mn,Cu,and Fe decreased.Similarly,the mean emergence time,and proline contents also decreased with each increase in Na concentration.The best outcomes were obtained in seedlings treated with seaweed under no salinity(0 mM NaCl)and mild salinity(50 mM NaCl)conditions.These findings suggest that seaweeds is an effective biostimulant for improving early-stage growth and stress resilience in peanuts under saline conditions.
文摘This study evaluates the impact of heavy metals(zinc,copper and cadmium)on the development and metabolic responses of the maize(Zea mays)variety“Torro Plus”.Seeds were cultivated on MS medium enriched with progressively higher concentrations of heavy metals(50,100 and 150μM),and plants were analyzed after 21 days.The results show a significant reduction in morphological parameters,notably an 87.28%decrease in the fresh weight of aerial parts and a 69.93%decrease in the fresh weight of roots under 150μM of Cd.Chlorophyll a,b and total content also decreased drastically,reaching a maximum reduction of 74.31%under Cd(150μM).In contrast,secondary metabolites such as proline and flavonoids increased,with a maximum proline accumulation of 0.71 mg/g under Cu(150μM)and a flavonoid concentration reaching 176.33 mg/g under Cu(100μM).These results show mechanisms of adaptation to stress,notably the accumulation of flavonoids and proline,while highlighting the increased toxicity of cadmium at high doses.These data are promising for applications in phytoremediation and sustainable agriculture.This study provides important data on the physiological and biochemical responses of plants to heavy metals and opens up prospects for phytoremediation applications.
文摘Phytotoxicity of cadmium on growing Arachis hypogaea L. seedlings was studied. Seeds were exposed to 25, 50, and 100 μmol/L CdCl2 concentrations, for a period of 10, 15, 20 and 25 d. The extent of damage to chlorophyll, protein, proline, nitrate and nitrite reductase, antioxidant enzyme activity in leaves and roots were evaluated after 10 d of cadmium stress. The higher concentration of cadmium (100 μmol/L) resulted (leaves and roots) total chlorophyll 91.01%, protein 79.51%, 83.61%, nitrate reductase 79.39%, 80.72% and nitrite reductase 77.07%, 75.88% activity decreased with increase in cadmium concentrations and exposure periods. Cadmium caused significant changes in the activity of antioxidative enzymes. Contrastingly Cd treated plant tissues showed an increase in proline 159.87%, 239.6%, gluthion reductase (GR) 337.72%, 306.14%, superoxide disumutase (SOD) 688.56%, 381.72%, ascorbate peroxidase (APX) 226.47%, 252.14%, peroxidase (POD) 72.19%, 60.29% and catalase (CAT) 228.96%, 214.74% as compared to control. Cadmium stress caused a significant increase in the rate of SOD activity in leaves and roots of plant species. Results show the crop A. hypogaea is highly sensitive even at very low cadmium concentrations.
基金supported financially by the Educational Committee of Beijing and Construction Project of Key Lab and Subject of Beijing,China (XK100190552,JD100190537)
文摘The plants of two elfalfa (Medicago sativa L.) cultivars differing in salt tolerance were subjected to three salt treatments, 70, 140, and 210 mM NaCl for 7 days. Root, shoot, and leaf growths were inhibited by increased salt treatments in both cultivars, and at 140 and 210 mM salt treatments, Zhongmu 1 had significantly higher root, shoot, and leaf dry weights per plant than Deft. The malondialdehyde (MDA) accumulation in Deft was considerably greater than in Zhongmu 1, indicating a higher degree of lipid peroxidation at 140 and 210 mM salt treatments. The changes in the activity and active isoforms of antioxidant enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and ascorbate peroxidase (APOX, EC 1.11,1.11), accumulation of free proline, and rate of lipid peroxidation in leaves of two alfalfa cultivars were also investigated. After stress, the activity and active isoforms of antioxidative enzymes were altered and the extent of alteration varied between the cultivar Deft and Zhongmu 1. The proline accumulation in Deft was considerably greater than in Zhongmu 1 at 210 mM salt treatment. This indicated that proline accumulation may be the result, instead of the cause, of salt tolerance.
基金the Deanship of Scientific Research at King Saud University,Saudi Arabia(RGP-271)
文摘Plant secondary metabolites play vital role in plant stress response. In this study we investigated whether root colonization of tomato (Solanum lycopersicum) infected by Trichoderma harzianum leads to alterations in the biosynthesis of secondary plant metabolites including phytohormones and osmolyte proline under drought stress. Exposure of tomato to drought caused a drastic decline in plant growth and physiological parameters. Tomato inoculated with T. harzianum showed increased root and shoot growth and chlorophyll pigments as compared to uninoculated controls as well as drought stressed plants. Proline and total soluble protein content was increased in plants inoculated with T. harzianum under both normal as well as drought conditions. An obvious increase in phenol and flavonoid content was observed due to T. haczianum. In addition, T. hat-zianum inoculated plants maintained higher levels of growth regulators indole acetic acid, indole butyric acid, and gibberellic acid under drought stress. Improved secondary metabolites which play an important role in plant stress tolerance by T. hat-zianum may have coordinately worked for bringing the growth regulation by protecting membranes from reactive oxygen species (ROS) and enhance plant growth through accessing more nutrients by root system.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions and Program for Student Innovation through Research and Training(SRT),China(1918C12)。
文摘The mechanism of melatonin(MT)induced chilling tolerance in harvested cucumber fruit was investigated at commercial maturity.In this study,cucumber fruits were treated with 100μmol L^(-1) MT at 4℃ and 90% relative humidity for 15 d of storage.In comparison with the control,cucumber treatment with MT resulted in reduced chilling injury(CI),decreased electrolyte leakage and enhanced firmness.The fruits treated with MT showed higher chlorophyll contents in storage conditions with suppressed chlorophyllase enzyme activity.MT treatment increased arginine decarboxylase(ADC)and ornithine decarboxylase(ODC)enzyme activities.Moreover,enhanced expression of the Cucumis sativus ADC(CsADC)and C.sativus ODC(CsODC)genes resulted in the accumulation of polyamine contents.Similarly,proline levels exhibited higher levels among treated fruits.Meanwhile,the proline synthesizing enzymes △1-pyrroline-5-carboxylate syntheses(P5CS)and ornithine aminotransferase(OAT)were significantly increased,while a catabolic enzyme of proline dehydrogenase(PDH)activity was inhibited by treatment.In addition,MT induced expression of C.sativus OAT(CsOAT)and C.sativus P5CS(CsP5CS)genes.Cucumber fruits treated with MT also exhibited higher γ-aminobutyric acid(GABA)content by enhanced GABA transaminase(GABA-T)and glutamate decarboxylase(GAD)enzyme activities and a higher C.sativus GAD(CsGAD)gene expression.To sum up,the results show that MT treatment enhanced chilling tolerance,which was associated with the regulation of polyamines,as well as proline and γ-aminobutyric acid.
基金This work was supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20140483)China Postdoctoral Science Foundation(Grant No.2014M560451).
文摘Peach(Prunus persica Batsch‘Yuhualu’)fruit are sensitive to chilling injury(CI).Proline,polyamine(PA),and nitric oxide(NO)are important small regulators of various metabolic pathways under chilling stress that mitigate CI.Ethylene is known to promote senescence and CI,while 1-methylcyclopropene(1-MCP)is an antagonist that inhibits the effects of ethylene.However,how1-MCP and ethylene affect proline,PA,and NO levels under chilling stress remains unclear.To address these questions,1-MCP(1μL·L^(−1))and ethylene(1μL·L^(−1))treatments were applied to peach fruit.Fruit were stored at 4°C for 28 d,then moved to 25°C for 3 d immediately after cold storage.Peach fruit exhibited CI symptoms after 7 d of cold storage with enhanced electrolyte leakage and malondialdehyde contents.The 1-MCP treatment significantly(P<0.05)restrained peach CI,and fruit did not exhibit CI symptoms until 14 d of cold storage.Proline and PAs in peach under chilling stress weremostly synthesized from glutamate and arginine,which were catalyzed by1-pyrroline-5-carboxylate synthetase and arginine decarboxylase,respectively.1-MCPtreated fruit exhibited higher proline and PA contents and enhanced chilling tolerance compared to the control,while ethylene-treated fruit had lower proline and PA contents and reduced chilling tolerance.Ethylene-treated fruit,which exhibited more severe CI symptoms compared to the control,had significantly(P<0.05)lower NO contents and NO synthase activities.However,NOmay not be a direct acting factor in 1-MCPinduced chilling tolerance,as 1-MCP-treated fruit had lower NO contents and NO synthase activities compared to the control.In conclusion,proline and PA clearly played direct and important roles in 1-MCP-induced peach chilling tolerance,while NO may not be actively involved.
文摘To investigate the effects of formulated fertilizer synergist on the drought tolerance in rice, pot experiment was conducted to analyze the photosynthetic characteristics and the accumulation of abscisic acid (ABA) and proline in middle-season rice variety Peiliangyou 93. The synergist could improve the net photosynthetic rate, and coordination between the water loss and the CO2 absorption as well as reduce the harmful effect on photosynthetic process under drought conditions. Under drought, the ABA accumulated massively both in roots and leaves, while the ABA content in roots was far higher than that in leaves. The results indicate that synergist could increase the ABA accumulation, but reduce the proline accumulation in rice plant under drought.
基金support provided by the National Natural Science Foundation of China(Grant No.31701939)National Natural Science Foundation of Shaanxi province,China(Grant No.2019JQ-324)+1 种基金National Key R&D Program of China(Grant No.2018YFD0100704)the Modern Agro-industry Technology Research System of China(Grant No.CARS-25).
文摘Proline accumulation has been shown to occur in plants in response to various environmental stresses.Although proline metabolismrelated genes have been functionally characterized,the inter-organ transport of proline in stressed plants remains unclear.In this study,free proline was detected with significant accumulations in the roots,stems,and leaves of watermelon drought-tolerant germplasm M08 and drought-susceptible line Y34 under drought stress.Expression profiling and enzyme activity measurements revealed that ClP5CS1 gene,rather than its paralog ClP5CS2,mainly contributes to the proline synthesis in leaves via the Glu pathway.Additionally,over-expression of the ClP5CS genes significantly enhanced the drought tolerance of transgenic Arabidopsis lines.Furthermore,we confirmed that proline is mainly synthesized in leaves and transported to roots in watermelon under drought stress.Transcriptome and expression analyses revealed that the genes involved in proline metabolism exhibited different expression levels.Specifically,ClP5CS1 was upregulated in leaves and roots,while ClP5CS2 was downregulated under drought stress.Also,415 and 362 differently expressed TFs were identified in roots and leaves,respectively,with the majority upregulated in the former.Ultimately,a model for proline metabolism was proposed.The findings of this study provided new insights into the biosynthesis,transport,and regulatory mechanism of drought-induced proline in plants.