Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem....Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.展开更多
Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-025-01545-x The publication of this article unfortunately contained mistakes.Equation(14)was not correct.The corrected equation is given below.
As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression progra...As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression programming(GEP)algorithm-based model,in which the data of borehole breakout size,vertical principal stress,and rock strength characteristics are used as the inputs,is proposed to predict the minimum horizontal principal stress.Seventy-nine(79)samples with seven features are collected to construct the minimum horizontal principal stress dataset used for training models.Twenty-four(24)GEP model hyperparameter sets were configured to explore the key parameter combinations among the inputs and their potential relationships with the minimum horizontal principal stresses.Model performance was evaluated using root mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R^(2)).By comparing predictive performance and parameter composition,two models were selected from 24 GEP models that demonstrated excellent predictive performance and simpler parameter composition.Compared with prevalent models,the results indicate that the two selected GEP models have better performance on the test set(R^(2)=0.9568 and 0.9621).Additionally,the results conducted by SHapley Additive exPlanations(SHAP)sensitivity analysis and Local Interpretable Model-agnostic Explanations(LIME)demonstrate that the vertical principal stress is the most influential parameter in both GEP models.The two GEP models have simple parameter compositions as well as stable and excellent prediction performance,which is a viable method for predicting the minimum horizontal principal stresses.展开更多
In order to solve the black-box modeling problem and improve the prediction accuracy of model,two distinguished models for tensile strength(Ts)and yield strength(Ys)of hot-rolled strip steel are established based on t...In order to solve the black-box modeling problem and improve the prediction accuracy of model,two distinguished models for tensile strength(Ts)and yield strength(Ys)of hot-rolled strip steel are established based on the industrial hot-rolled data and the algorithm of gene expression programming(GEP).Firstly,the industrial data of hot-rolled strip steel are preprocessed using the Pauta criterion,so as to eliminate outliers.The key input variables that affect Ys and Ts are selected by using the method of the maximal information coefficient(MIC).Secondly,the explicit prediction models of Ys and Ts are established using GEP.Subsequently,the model results based on GEP are compared with those based on the support vector regression(SVR)and the back propagation neural network(BPNN).Finally,the mathematical expression models for Ys and Ts obtained by GEP are used to further analyse the specific relationships between the chemical composition and mechanical property.It is shown that the errors of Ys and Ts based on GEP are less than 4%,and the coefficient of determination(R^(2))of Ys and Ts based on GEP is above 0.9,which has strong prediction performance.The prediction accuracy of GEP can achieve the same level with SVR and BPNN.It is worth mentioning that the proposed model can not only show the explicit relationship between the chemical composition,production process,and mechanical property of strip steel,but also occupy high prediction accuracy,which can make reliable reference for strip steel product design and optimisation.展开更多
随着汽车智能化、网联化、共享化、电动化的发展,汽车软件迭代频繁且车内通信数据激增,传统总线无法满足需求,需引入以太网通信。远程在线升级(Over the Air,OTA)需告知用户升级内容,涉及大量数据传输,故采用基于以太网的IP面向服务可...随着汽车智能化、网联化、共享化、电动化的发展,汽车软件迭代频繁且车内通信数据激增,传统总线无法满足需求,需引入以太网通信。远程在线升级(Over the Air,OTA)需告知用户升级内容,涉及大量数据传输,故采用基于以太网的IP面向服务可扩展通信协议(SOME/IP)。本文结合OTA升级功能,介绍基于SOME/IP协议的开发流程与方法,为车载以太网网络开发提供指导。展开更多
Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disruptin...Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.展开更多
During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive...During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.展开更多
基金supported by the Start-up Fund from Hainan University(No.KYQD(ZR)-20077)。
文摘Three-dimensional(3D)single molecule localization microscopy(SMLM)plays an important role in biomedical applications,but its data processing is very complicated.Deep learning is a potential tool to solve this problem.As the state of art 3D super-resolution localization algorithm based on deep learning,FD-DeepLoc algorithm reported recently still has a gap with the expected goal of online image processing,even though it has greatly improved the data processing throughput.In this paper,a new algorithm Lite-FD-DeepLoc is developed on the basis of FD-DeepLoc algorithm to meet the online image processing requirements of 3D SMLM.This new algorithm uses the feature compression method to reduce the parameters of the model,and combines it with pipeline programming to accelerate the inference process of the deep learning model.The simulated data processing results show that the image processing speed of Lite-FD-DeepLoc is about twice as fast as that of FD-DeepLoc with a slight decrease in localization accuracy,which can realize real-time processing of 256×256 pixels size images.The results of biological experimental data processing imply that Lite-FD-DeepLoc can successfully analyze the data based on astigmatism and saddle point engineering,and the global resolution of the reconstructed image is equivalent to or even better than FD-DeepLoc algorithm.
文摘Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-025-01545-x The publication of this article unfortunately contained mistakes.Equation(14)was not correct.The corrected equation is given below.
基金partially supported by the National Natural Science Foundation of China(Grant Nos.42177164 and 52474121)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073).
文摘As a critical component of the in situ stress state,determination of the minimum horizontal principal stress plays a significant role in both geotechnical and petroleum engineering.To this end,a gene expression programming(GEP)algorithm-based model,in which the data of borehole breakout size,vertical principal stress,and rock strength characteristics are used as the inputs,is proposed to predict the minimum horizontal principal stress.Seventy-nine(79)samples with seven features are collected to construct the minimum horizontal principal stress dataset used for training models.Twenty-four(24)GEP model hyperparameter sets were configured to explore the key parameter combinations among the inputs and their potential relationships with the minimum horizontal principal stresses.Model performance was evaluated using root mean squared error(RMSE),mean absolute error(MAE),mean absolute percentage error(MAPE),and coefficient of determination(R^(2)).By comparing predictive performance and parameter composition,two models were selected from 24 GEP models that demonstrated excellent predictive performance and simpler parameter composition.Compared with prevalent models,the results indicate that the two selected GEP models have better performance on the test set(R^(2)=0.9568 and 0.9621).Additionally,the results conducted by SHapley Additive exPlanations(SHAP)sensitivity analysis and Local Interpretable Model-agnostic Explanations(LIME)demonstrate that the vertical principal stress is the most influential parameter in both GEP models.The two GEP models have simple parameter compositions as well as stable and excellent prediction performance,which is a viable method for predicting the minimum horizontal principal stresses.
基金supported by the National Natural Science Foundation of China(Grant Nos.52074187 and 52274388)Liaoning Province Artificial Intelligence Innovation and Development Plan Project(Major Science and Technology Project)(2023JH26-10100002)the National Key Research and Development Program of China(No.2022YFB3304800).
文摘In order to solve the black-box modeling problem and improve the prediction accuracy of model,two distinguished models for tensile strength(Ts)and yield strength(Ys)of hot-rolled strip steel are established based on the industrial hot-rolled data and the algorithm of gene expression programming(GEP).Firstly,the industrial data of hot-rolled strip steel are preprocessed using the Pauta criterion,so as to eliminate outliers.The key input variables that affect Ys and Ts are selected by using the method of the maximal information coefficient(MIC).Secondly,the explicit prediction models of Ys and Ts are established using GEP.Subsequently,the model results based on GEP are compared with those based on the support vector regression(SVR)and the back propagation neural network(BPNN).Finally,the mathematical expression models for Ys and Ts obtained by GEP are used to further analyse the specific relationships between the chemical composition and mechanical property.It is shown that the errors of Ys and Ts based on GEP are less than 4%,and the coefficient of determination(R^(2))of Ys and Ts based on GEP is above 0.9,which has strong prediction performance.The prediction accuracy of GEP can achieve the same level with SVR and BPNN.It is worth mentioning that the proposed model can not only show the explicit relationship between the chemical composition,production process,and mechanical property of strip steel,but also occupy high prediction accuracy,which can make reliable reference for strip steel product design and optimisation.
文摘随着汽车智能化、网联化、共享化、电动化的发展,汽车软件迭代频繁且车内通信数据激增,传统总线无法满足需求,需引入以太网通信。远程在线升级(Over the Air,OTA)需告知用户升级内容,涉及大量数据传输,故采用基于以太网的IP面向服务可扩展通信协议(SOME/IP)。本文结合OTA升级功能,介绍基于SOME/IP协议的开发流程与方法,为车载以太网网络开发提供指导。
基金financially supported by Ministerio de Ciencia e Innovación projects SAF2017-82736-C2-1-R to MTMFin Universidad Autónoma de Madrid and by Fundación Universidad Francisco de Vitoria to JS+2 种基金a predoctoral scholarship from Fundación Universidad Francisco de Vitoriafinancial support from a 6-month contract from Universidad Autónoma de Madrida 3-month contract from the School of Medicine of Universidad Francisco de Vitoria。
文摘Every year, around the world, between 250,000 and 500,000 people suffer a spinal cord injury(SCI). SCI is a devastating medical condition that arises from trauma or disease-induced damage to the spinal cord, disrupting the neural connections that allow communication between the brain and the rest of the body, which results in varying degrees of motor and sensory impairment. Disconnection in the spinal tracts is an irreversible condition owing to the poor capacity for spontaneous axonal regeneration in the affected neurons.
基金supported by the National Natural Sci‐ence Foundation of China(Grant No.62306325)。
文摘During the use of robotics in applications such as antiterrorism or combat,a motion-constrained pursuer vehicle,such as a Dubins unmanned surface vehicle(USV),must get close enough(within a prescribed zero or positive distance)to a moving target as quickly as possible,resulting in the extended minimum-time intercept problem(EMTIP).Existing research has primarily focused on the zero-distance intercept problem,MTIP,establishing the necessary or sufficient conditions for MTIP optimality,and utilizing analytic algorithms,such as root-finding algorithms,to calculate the optimal solutions.However,these approaches depend heavily on the properties of the analytic algorithm,making them inapplicable when problem settings change,such as in the case of a positive effective range or complicated target motions outside uniform rectilinear motion.In this study,an approach employing a high-accuracy and quality-guaranteed mixed-integer piecewise-linear program(QG-PWL)is proposed for the EMTIP.This program can accommodate different effective interception ranges and complicated target motions(variable velocity or complicated trajectories).The high accuracy and quality guarantees of QG-PWL originate from elegant strategies such as piecewise linearization and other developed operation strategies.The approximate error in the intercept path length is proved to be bounded to h^(2)/(4√2),where h is the piecewise length.