A comprehensive review of scientific literature has uncovered no reported cases of date palm trees infected by a virus and no viral infections have been reported by farmers. In spite of the hot and humid environment t...A comprehensive review of scientific literature has uncovered no reported cases of date palm trees infected by a virus and no viral infections have been reported by farmers. In spite of the hot and humid environment they inhabit, the abundance of viral infestations in the soil, other plants and organisms surrounding the trees and the frequency of importation and transplantation of these trees into the region. Such conditions should cause the date palms to also be infected. Notably, other palm trees do not exhibit the same level of innate viral immunity that is found in date palms. The date palm tree’s innate viral immunity is a virgin area in botanical research. The biological segment in date palm tree DNA that enables survival under genotoxic radiation also deserves further investigation. This field of study may enable the breeding of other economically important plants to improve desert ecology and economy, land management, agriculture and horticulture.展开更多
Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various ...Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues(roots and leaves) of Tunisian date palm trees(Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar(PDA) medium and identified by a sequence match search wherein their 18S–28S internal transcribed spacer(ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism(RFLP) analysis of the ITS from 200 fungal clones(leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella(Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria(members of the Nectriaceae family), the leaves were essentially colonized by Alternaria(members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors' knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees(P. dactylifera).展开更多
文摘A comprehensive review of scientific literature has uncovered no reported cases of date palm trees infected by a virus and no viral infections have been reported by farmers. In spite of the hot and humid environment they inhabit, the abundance of viral infestations in the soil, other plants and organisms surrounding the trees and the frequency of importation and transplantation of these trees into the region. Such conditions should cause the date palms to also be infected. Notably, other palm trees do not exhibit the same level of innate viral immunity that is found in date palms. The date palm tree’s innate viral immunity is a virgin area in botanical research. The biological segment in date palm tree DNA that enables survival under genotoxic radiation also deserves further investigation. This field of study may enable the breeding of other economically important plants to improve desert ecology and economy, land management, agriculture and horticulture.
基金supported by EGIDE(No.18470SA),CMCU(No.08G908)the Tunisian Ministry of Higher Education
文摘Endophytic flora plays a vital role in the colonization and survival of host plants, especially in harsh environments, such as arid regions. This flora may, however, contain pathogenic species responsible for various troublesome host diseases. The present study is aimed at investigating the diversity of both cultivable and non-cultivable endophytic fungal floras in the internal tissues(roots and leaves) of Tunisian date palm trees(Phoenix dactylifera). Accordingly, 13 isolates from both root and leaf samples, exhibiting distinct colony morphology, were selected from potato dextrose agar(PDA) medium and identified by a sequence match search wherein their 18S–28S internal transcribed spacer(ITS) sequences were compared to those available in public databases. These findings revealed that the cultivable root and leaf isolates fell into two groups, namely Nectriaceae and Pleosporaceae. Additionally, total DNA from palm roots and leaves was further extracted and ITS fragments were amplified. Restriction fragment length polymorphism(RFLP) analysis of the ITS from 200 fungal clones(leaves: 100; roots: 100) using HaeIII restriction enzyme revealed 13 distinct patterns that were further sequenced and led to the identification of Alternaria, Cladosporium, Davidiella(Cladosporium teleomorph), Pythium, Curvularia, and uncharacterized fungal endophytes. Both approaches confirmed that while the roots were predominantly colonized by Fusaria(members of the Nectriaceae family), the leaves were essentially colonized by Alternaria(members of the Pleosporaceae family). Overall, the findings of the present study constitute, to the authors' knowledge, the first extensive report on the diversity of endophytic fungal flora associated with date palm trees(P. dactylifera).