Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the...Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the structure and properties of a new type of thermoplastic polyurethanes(TPUs)with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond andπ-πinteraction in hard segments.As detected by rheometry,the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs.In situ FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology inπ-πinteraction based aromatic TPUs.Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to strongerπ-πstacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics.The enhancedπ-πpacking and micro-phase structure in TPUs further kinetically immobilize the dynamic bond.This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU.This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials.展开更多
Stable operation is one of the most important requirements for a laser source for high-precision applications.Many efforts have been made to improve the stability of lasers by employing various techniques,e.g.,electri...Stable operation is one of the most important requirements for a laser source for high-precision applications.Many efforts have been made to improve the stability of lasers by employing various techniques,e.g.,electrical and/or optical injection and phase locking.However,these techniques normally involve complex experimental facilities.Therefore,an easy implementation of the stability evaluation of a laser is still challenging,especially for lasers emitting in the terahertz(THz)frequency range because the broadband photodetectors and mature locking techniques are limited.In this work,we propose a simple method,i.e.,relative phase locking,to quickly evaluate the stability of THz lasers without a need of a THz local oscillator.The THz laser system consists of a THz quantum cascade laser(QCL)frequency comb and a single-mode QCL.Using the single-mode laser as a fast detector,heterodyne signals resulting from the beating between the singlemode laser and the comb laser are obtained.One of the heterodyne beating signals is selected and sent to a phase-locked loop(PLL)for implementing the relative phase locking.Two kinds of locks are performed by feeding the output error signal of the PLL,either to the comb laser or to the single-mode laser.By analyzing the current change and the corresponding frequency change of the PLL-controlled QCL in each phase-locking condition,we,in principle,are able to experimentally compare the stability of the emission frequency of the single-mode QCL(f s)and the carrier envelope offset frequency(f CEO)of the QCL comb.The experimental results reveal that the QCL comb with the repetition frequency injection locked demonstrates much higher stability than the single-mode laser.The work provides a simple heterodyne scheme for understanding the stability of THz lasers,which paves the way for the further locking of the lasers and their high-precision applications in the THz frequency range.展开更多
In this paper,three magnetrons with each of them having specifically designed multiple coupling ports,which deliver specific power distribution for developing a magnetron array based on efficient phase locking between...In this paper,three magnetrons with each of them having specifically designed multiple coupling ports,which deliver specific power distribution for developing a magnetron array based on efficient phase locking between them,are proposed to produce high powerμs-level pulses.To demonstrate the effectiveness of the magnetron with one and two coupling ports as a unit for efficient phase locking,we designed experimentally the coupling ports delivering~10%(the power distribution ratio)of the output power of the magnetron for coupling with other magnetron units.The effect of one and two coupling ports on the operating capability,including the power distribution ratio,anode current and frequency,is demonstrated by establishing an equivalent experimental model which can characterize an ideal operation of the array.The experimental results show that the power distribution ratio is~9%for the magnetron with one coupling port,and~12.5%(coupling port 1,2)for the magnetron with two coupling ports.This shows good uniformity of the coupling capability of the two coupling ports and provides guidance for optimizing the power distribution ratio of multiport magnetron units,which are critical for efficient phase locking in the proposed array in future and higher power arrays.展开更多
The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following th...The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following the E1 Nino events. There also tend to be warm anomalies in the boreal summer or fall during La Nina development years and cold anomalies in winter or spring following the La Nina events. The seasonal phase-locking of SST change in the EIO associated with E1 Nino/Southern Oscillation is linked to the variability of convection over the maritime continent, which induces an atmospheric Rossby wave over the EIO. Local air-sea interaction exerts different effects on SST anomalies, depending on the relationship between the Rossby wave and the mean flow related to the seasonal migration of the buffer zone, which shifts across the equator between summer and winter. The summer cold events start with cooling in the Timor Sea, together with increasing easterly flow along the equator. Negative SST anomalies develop near Sumatra, through the interaction between the atmospheric Rossby wave and the underneath sea surface. These SST anomalies are also contributed to by the increased upwelling of the mixed layer and the equatorward temperature advection in the boreal fall. As the buffer zone shifts across the equator towards boreal winter, the anomalous easterly flow tends to weaken the mean flow near the equator, and the EIO SST increases due to the reduction of latent heat flux from the sea surface. As a result, wintertime SST anomalies appear with a uniform and nearly basin-wide pattern beneath the easterly anomalies. These SST anomalies are also caused by the increase in solar radiation associated with the anticyclonic atmospheric Rossby wave over the EIO. Similarly, the physical processes of the summer warm events, which are followed by wintertime cold SST anomalies, can be explained by the changes in atmospheric and oceanic fields with opposite signs to those anomalies described above.展开更多
We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge l...We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.展开更多
The relation of interannual anomaly of East Asian monsoon to the ENSO cycle is investigated in terms of even and odd symmetry analysis over a tropical heating field based on the past 30-year data. Evidence suggests th...The relation of interannual anomaly of East Asian monsoon to the ENSO cycle is investigated in terms of even and odd symmetry analysis over a tropical heating field based on the past 30-year data. Evidence suggests that odd and even symmetry components related to the monsoon and Walker heating, respectively, effectively describe the East Asian monsoon circulation and Pacific Walker analog, with the monsoon intensity index corresponding to its heating vigor and western Pacific Walker heating vigor to ENSO phase change, both types of heating marked by pronounced seasonal variation and phase-locking; the key region for linking monsoon-ENSO interaction is the western Pacific warm pool; the monsoon effect upon ENSO cycle is affected jointly by the seasonal evolution and interannual anomaly of the heating components; the superimposition of an anti-Walker circulation phase produced by interannual winter monsoon perturbation upon a weaker Walker phase on a seasonal basis leads to an El Nino happening in March-April and plays a significant role in maintaining a warm ENSO phase.展开更多
The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength...The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached. Crisis-induced desynchronizationis found, and its consequent spatiotemporal chaos is studied.展开更多
We experimentally demonstrate the phase locking of a two-dimensional (2D) array of four fiber lasers using an improved self-imaging resonator with a spatial filter. The high visibility interference round stripes of ...We experimentally demonstrate the phase locking of a two-dimensional (2D) array of four fiber lasers using an improved self-imaging resonator with a spatial filter. The high visibility interference round stripes of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 134 W. Tile entire system operates quite stably, and no thermal effects observe in the spatial filter, indicating that the coherent output power can be increased using this method.展开更多
The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of ...The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.展开更多
A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short...A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.展开更多
Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the p...Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.展开更多
Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing ...Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing the data rate,the PLL needs to generate low-jitter output[1].展开更多
A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the externa...A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C 0). Considering the fact that|C 0/S| should be larger than unity if the external cavity is effective,and|C 1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.展开更多
Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmoni...Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmonics of the annual solar irradiance cycle having two- or three-year periodicity. There are 40 El Niño episodes occurring since 1872, each found within one of eighteen such sequences. Our list includes all previously reported events. Three El Niño episodes have already been observed in boreal winters of 2009, 2012 and 2015, illustrating a sequence of 3-year intervals that began in 2008. If the climate system remains in this state, the next El Niño is likely to occur in boreal winter of 2018.展开更多
The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation ...The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.展开更多
In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points...In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.展开更多
A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage change...A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.展开更多
A Monolithic integrated phase locked-loop (PLL) with a low phase noise is proposed in this paper. Several techniques are utilized to improve the performance of the PLL which works at the milli- meter-wave band. The ...A Monolithic integrated phase locked-loop (PLL) with a low phase noise is proposed in this paper. Several techniques are utilized to improve the performance of the PLL which works at the milli- meter-wave band. The on-chip high-Q eoplanar waveguides (CPWs) are utilized in the resonant tank and the differential current amplifier with a resonator is used to realize the VCO. In the output buffer circuit, several stages of cascaded source-followers connect and differential amplifiers are adopted to improve the driving capability of the PLL' s output signals. An improved analog multiplier topology is also used in the PD circuit to improve the gain of the PD. The proposed PLL is realized with a 0.2p, m GaAs pseudomorphie high electron mobility transistor (PHEMT) process. At 10 kHz offset from the center frequency, the measured output phase noise of the PLL output is only -88.83dBc/Hz. The circuit exhibits a low root mean sauare (RMS) litter of 1.68Ds.展开更多
This paper presents a single-phase Z-source inverter as a power conditioning system for a single phase utility connected system. Z-source inverter is a single-stage topology that has buck-boost feature, which is possi...This paper presents a single-phase Z-source inverter as a power conditioning system for a single phase utility connected system. Z-source inverter is a single-stage topology that has buck-boost feature, which is possible because of additional shoot through state introduced in zero state of the conventional inverter pulse width modulation and provides desired output AC voltage. Small distributed generation (DG) system with alternate energy sources requires power conditioning units with low cost, high efficiency and tolerance to wide range of input voltage variation and has to perform various functions such as dc-ac conversion, system control and achieve power quality norms. To meet some of these requirements a two-loop control strategy for ac side control with grid current feedback with PI control and inner filter capacitor current feedback with proportional control and on dc side PID control for Z-source capacitor voltage regulation are employed, which gives good transient response also suppress load and source disturbances effectively. Theoretical analysis of proposed scheme is established and then simulation results are presented to validate proposed control strategy.展开更多
Fractional-order control(FOC)has gained significant attention in power system applications due to their ability to enhance performance and increase stability margins.In grid-connected converter(GCC)systems,the synchro...Fractional-order control(FOC)has gained significant attention in power system applications due to their ability to enhance performance and increase stability margins.In grid-connected converter(GCC)systems,the synchronous reference frame phase-locked loop(SRF-PLL)plays a critical role in grid synchronization for renewable power generation.However,there is a notable research gap regarding the application of FOC to the SRF-PLL.This paper proposes a fractional-order SRF-PLL(FO-SRF-PLL)that incorporates FOC to accurately track the phase angle of the terminal voltage,thereby improving the efficiency of grid-connected control.The dynamic performance of the proposed FO-SRF-PLL is evaluated under varying grid conditions.A comprehensive analysis of the small-signal stability of the GCC system employing the FO-SRF-PLL is also presented,including derived small-signal stability conditions.The results demonstrate that the FO-SRF-PLL significantly enhances robustness against disturbances compared with the conventional SRF-PLL.Furthermore,the GCC system with the FO-SRF-PLL maintains stability even under weak grid conditions,showing superior stability performance over the SRF-PLL.Finally,both simulation and experimental results are provided to validate the analysis and conclusions presented in this paper.展开更多
基金financially supported by the National Natural Science Foundation of China(No.21774135)。
文摘Stimulus-responsive polymers containing dynamic bonds enable fascinating properties of self-healing,recycling and reprocessing due to enhanced relaxation of polymer chain/network with labile linkages.Here,we study the structure and properties of a new type of thermoplastic polyurethanes(TPUs)with trapped dynamic covalent bonds in the hard-phase domain and report the frustrated relaxation of TPUs containing weak dynamic bond andπ-πinteraction in hard segments.As detected by rheometry,the aromatic TPUs with alkyl disulfide in the hard segments possess the maximum network relaxation time in contrast to those without dynamic bonds and alicyclic TPUs.In situ FTIR and small-angle scattering results reveal that the alkyl disulfide facilitates stronger intermolecular interaction and more stable micro-phase morphology inπ-πinteraction based aromatic TPUs.Molecular dynamics simulation for pure hard segments of model molecules verify that the presence of disulfide bonds leads to strongerπ-πstacking of aromatic rings due to both enhanced assembling thermodynamics and kinetics.The enhancedπ-πpacking and micro-phase structure in TPUs further kinetically immobilize the dynamic bond.This kinetically interlocking between the weak dynamic bonds and strong molecular interaction in hard segments leads to much slower network relaxation of TPU.This work provides a new insight in tuning the network relaxation and heat resistance as well as molecular self-assembly in stimulus-responsive dynamic polymers by both molecular design and micro-phase control toward the functional applications of advanced materials.
基金supported by the National Natural Science Foundation of China(Grant Nos.62235019,61875220,61927813,62035005,61991430,and 62105351)the“From 0 to 1”Innovation Program of the Chinese Academy of Sciences(Grant No.ZDBSLY-JSC009)+4 种基金the Scientific Instrument and Equipment Development Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20200032)the CAS Project for Young Scientists in BasicResearch(Grant No.YSBR-069)the National Science Fund for Excellent Young Scholars(Grant No.62022084)the Shanghai Outstanding Academic Leaders Plan(Grant No.20XD1424700)the Shanghai Youth Top Talent Support Program.The authors have no conflicts to disclose.
文摘Stable operation is one of the most important requirements for a laser source for high-precision applications.Many efforts have been made to improve the stability of lasers by employing various techniques,e.g.,electrical and/or optical injection and phase locking.However,these techniques normally involve complex experimental facilities.Therefore,an easy implementation of the stability evaluation of a laser is still challenging,especially for lasers emitting in the terahertz(THz)frequency range because the broadband photodetectors and mature locking techniques are limited.In this work,we propose a simple method,i.e.,relative phase locking,to quickly evaluate the stability of THz lasers without a need of a THz local oscillator.The THz laser system consists of a THz quantum cascade laser(QCL)frequency comb and a single-mode QCL.Using the single-mode laser as a fast detector,heterodyne signals resulting from the beating between the singlemode laser and the comb laser are obtained.One of the heterodyne beating signals is selected and sent to a phase-locked loop(PLL)for implementing the relative phase locking.Two kinds of locks are performed by feeding the output error signal of the PLL,either to the comb laser or to the single-mode laser.By analyzing the current change and the corresponding frequency change of the PLL-controlled QCL in each phase-locking condition,we,in principle,are able to experimentally compare the stability of the emission frequency of the single-mode QCL(f s)and the carrier envelope offset frequency(f CEO)of the QCL comb.The experimental results reveal that the QCL comb with the repetition frequency injection locked demonstrates much higher stability than the single-mode laser.The work provides a simple heterodyne scheme for understanding the stability of THz lasers,which paves the way for the further locking of the lasers and their high-precision applications in the THz frequency range.
基金This work is supported in part by National Natural Science Foundation of China(No.62401125)Natural Science Foundation of Sichuan Province(No.2023NSFSC1376)Fundamental Research Funds for the Central Universities(No.ZYGX2024J008)。
文摘In this paper,three magnetrons with each of them having specifically designed multiple coupling ports,which deliver specific power distribution for developing a magnetron array based on efficient phase locking between them,are proposed to produce high powerμs-level pulses.To demonstrate the effectiveness of the magnetron with one and two coupling ports as a unit for efficient phase locking,we designed experimentally the coupling ports delivering~10%(the power distribution ratio)of the output power of the magnetron for coupling with other magnetron units.The effect of one and two coupling ports on the operating capability,including the power distribution ratio,anode current and frequency,is demonstrated by establishing an equivalent experimental model which can characterize an ideal operation of the array.The experimental results show that the power distribution ratio is~9%for the magnetron with one coupling port,and~12.5%(coupling port 1,2)for the magnetron with two coupling ports.This shows good uniformity of the coupling capability of the two coupling ports and provides guidance for optimizing the power distribution ratio of multiport magnetron units,which are critical for efficient phase locking in the proposed array in future and higher power arrays.
文摘The sea surface temperature (SST) anomaly of the eastern Indian Ocean (EIO) exhibits cold anomalies in the boreal summer or fall during E1 Nino development years and warm anomalies in winter or spring following the E1 Nino events. There also tend to be warm anomalies in the boreal summer or fall during La Nina development years and cold anomalies in winter or spring following the La Nina events. The seasonal phase-locking of SST change in the EIO associated with E1 Nino/Southern Oscillation is linked to the variability of convection over the maritime continent, which induces an atmospheric Rossby wave over the EIO. Local air-sea interaction exerts different effects on SST anomalies, depending on the relationship between the Rossby wave and the mean flow related to the seasonal migration of the buffer zone, which shifts across the equator between summer and winter. The summer cold events start with cooling in the Timor Sea, together with increasing easterly flow along the equator. Negative SST anomalies develop near Sumatra, through the interaction between the atmospheric Rossby wave and the underneath sea surface. These SST anomalies are also contributed to by the increased upwelling of the mixed layer and the equatorward temperature advection in the boreal fall. As the buffer zone shifts across the equator towards boreal winter, the anomalous easterly flow tends to weaken the mean flow near the equator, and the EIO SST increases due to the reduction of latent heat flux from the sea surface. As a result, wintertime SST anomalies appear with a uniform and nearly basin-wide pattern beneath the easterly anomalies. These SST anomalies are also caused by the increase in solar radiation associated with the anticyclonic atmospheric Rossby wave over the EIO. Similarly, the physical processes of the summer warm events, which are followed by wintertime cold SST anomalies, can be explained by the changes in atmospheric and oceanic fields with opposite signs to those anomalies described above.
基金funded by National Natural Science Foundation of China, grant numbers 62335006, 62274014, 62235016, 61734006, 61835011, 61991430funded by Key Program of the Chinese Academy of Sciences, grant numbers XDB43000000, QYZDJSSW-JSC027Beijing Municipal Science & Technology Commission, grant number Z221100002722018
文摘We demonstrated a scheme of phase-locked terahertz quantum cascade lasers(THz QCLs)array,with a single-mode pulse power of 108 mW at 13 K.The device utilizes a Talbot cavity to achieve phase locking among five ridge lasers with first-order buried distributed feedback(DFB)grating,resulting in nearly five times amplification of the single-mode power.Due to the optimum length of Talbot cavity depends on wavelength,the combination of Talbot cavity with the DFB grating leads to better power amplification than the combination with multimode Fabry-Perot(F-P)cavities.The Talbot cavity facet reflects light back to the ridge array direction and achieves self-imaging in the array,enabling phase-locked operation of ridges.We set the spacing between adjacent elements to be 220μm,much larger than the free-space wavelength,ensuring the operation of the fundamental supermode throughout the laser's dynamic range and obtaining a high-brightness far-field distribution.This scheme provides a new approach for enhancing the single-mode power of THz QCLs.
文摘The relation of interannual anomaly of East Asian monsoon to the ENSO cycle is investigated in terms of even and odd symmetry analysis over a tropical heating field based on the past 30-year data. Evidence suggests that odd and even symmetry components related to the monsoon and Walker heating, respectively, effectively describe the East Asian monsoon circulation and Pacific Walker analog, with the monsoon intensity index corresponding to its heating vigor and western Pacific Walker heating vigor to ENSO phase change, both types of heating marked by pronounced seasonal variation and phase-locking; the key region for linking monsoon-ENSO interaction is the western Pacific warm pool; the monsoon effect upon ENSO cycle is affected jointly by the seasonal evolution and interannual anomaly of the heating components; the superimposition of an anti-Walker circulation phase produced by interannual winter monsoon perturbation upon a weaker Walker phase on a seasonal basis leads to an El Nino happening in March-April and plays a significant role in maintaining a warm ENSO phase.
基金国家自然科学基金,国家重点基础研究发展计划(973计划),高等学校全国优秀博士学位论文作者专项基金,the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education,Institutions of MOE,HYD Foundation,教育部高校骨干教师资助计划
文摘The phase-locking dynamics in 1D and 2D lattices of non-identical coupled circle maps is explored. Aglobal phase locking can be attained via a cascade of clustering processes with the increase of the coupling strength.Collective spatiotemporal dynamics is observed when a global phase locking is reached. Crisis-induced desynchronizationis found, and its consequent spatiotemporal chaos is studied.
基金supported by the Shanghai Rising-Star Program (No. 09QB1401700)the National Natural Science Foundation of China (Nos. 60908011 and60907045)the National "863" Program of China(No. 2008AA03Z405)
文摘We experimentally demonstrate the phase locking of a two-dimensional (2D) array of four fiber lasers using an improved self-imaging resonator with a spatial filter. The high visibility interference round stripes of the coherent beam profile are observed. The coherent output power of the fiber array exceeds 134 W. Tile entire system operates quite stably, and no thermal effects observe in the spatial filter, indicating that the coherent output power can be increased using this method.
基金This work was supported by The National Key Basic Reserch and Development Project of China(2004CB418303)Project 4023100 of the Major Research Program for Global Change and Regional ResponseNational Natural Science Foundation of China(Grant No.40231005).
文摘The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.
文摘A fast-locking, low-jitter, phase-locked loop (PLL) with a simple phase-frequency detector is proposed. The phase-frequency detector is composed of only two XOR gates. It simultaneously achieves low jitter and short locking time. The voltage-controlled oscillator within the PLL consists of four-stage ring oscillators which are coupled to each other and oscillate with the same frequency and a phase shift of 45. The PLL is fabricated in 0. 1Stem CMOS technology. The measured phase noise of the PLL output at 500kHz offset from the 5GHz center frequency is - 102.6dBc/Hz. The circuit exhibits a capture range of 280MHz and a low RMS jitter of 2.06ps. The power dissipation excluding the output buffers is only 21.6roW at a 1.8V supply.
基金supported by the Innovation Foundation for Postgraduate of Hunan Province
文摘Truncation manipulation is a simple but effective way to improve the intensity distribution properties of the phase-locked Gaussian beam array at the receiving plane. In this paper, the analytical expression for the propagation of the phase-locked truncated Gaussian beam array in a turbulent atmosphere is obtained based on the extended Huygens--Fresnel principle. Power in the diffraction-limited bucket is introduced as the beam quality factor to evaluate the influence of different truncation parameters. The dependence of optimal truncation ratio on the number of beamlets, the intensity of turbulence, propagation distance and laser wavelength is calculated and discussed. It is revealed that the optimal truncation ratio is larger for the laser array that contains more lasers, and the optimal truncation ratio will shift to a larger value with an increase in propagation distance and decrease in intensity of atmosphere turbulence. The optimal truncation ratio is independent of laser wavelength.
基金supported by the University of Macao Research Fund under Grant MYRG-GRG2024-00298-IMEby the Macao Science and Technology Development Fund(FDCT)under Grant 0103/2022/AFJ.
文摘Fractional-N phase-locked loops(PLLs)are widely deployed in high-speed communication systems to generate local oscillator(LO)or clock signals with precise frequency.To support sophisticated modulations for increasing the data rate,the PLL needs to generate low-jitter output[1].
文摘A diode laser array(DLA)positioned in an external cavity can receive the radiations emitted from its neighboring elements (C 1) and that of itself (S) after being reflected at the DLA facet as well as from the external mirror (C 0). Considering the fact that|C 0/S| should be larger than unity if the external cavity is effective,and|C 1/S| should be larger than unity if the phase locking may be established in the external cavity.The requirements on the reflection at the facet of the diode laser array have been specified in terms of the cavity length and reflection coefficient of the external mirror.
文摘Using a newly reported Pacific sea surface temperature data set, we extend a prior study that assigned El Niño episodes to distinct sequences. Within these sequences the episodes are phase-locked to subharmonics of the annual solar irradiance cycle having two- or three-year periodicity. There are 40 El Niño episodes occurring since 1872, each found within one of eighteen such sequences. Our list includes all previously reported events. Three El Niño episodes have already been observed in boreal winters of 2009, 2012 and 2015, illustrating a sequence of 3-year intervals that began in 2008. If the climate system remains in this state, the next El Niño is likely to occur in boreal winter of 2018.
基金Supported by National Natural Science Foundation of China (60472054)
文摘The paper presents a kind of transmission system which employs M-ary Position Phase Shift Keying(MPPSK) to send data and Phase Locked Loop(PLL) based techniques for data retrieve.With a single PLL, MPPSK demodulation is achieved, as well as carrier recovery and symbol synchronization.Firstly, MPPSK modulation method is briefly introduced.2PPSK's PSD expression is given with its optimization result.Orthogonal Phase Detector(PD) and static threshold are used for the purpose of wider phase range and simplicity in demodulation.The data rate is alterable, which is 4.65 kbps for 2PPSK and 9.3 kbps for 4PPSK in the paper.Then some indicative comparisons in Signal to Noise Ratio Symbol Error Rate(SNR-SER) are made among 2PPSK, 3PPSK and 4PPSK, of which 4PPSK has proved to be optimal in ten slots each symbol conditions.And finally, it is demonstrated by system simulations that lower than 10-4 Symbol Error Rate(SER) performance can be obtained at 13 dB symbol SNR.
基金supported by the National Natural Science Foundation of China(Grant Nos.11773060,11973074,U1831137 and 11703070)National Key Basic Research and Development Program(2018YFA0404702)+1 种基金Shanghai Key Laboratory of Space Navigation and Positioning(3912DZ227330001)the Key Laboratory for Radio Astronomy of CAS。
文摘In deep space exploration,many engineering and scientific requirements require the accuracy of the measured Doppler frequency to be as high as possible.In our paper,we analyze the possible frequency measurement points of the third-order phase-locked loop(PLL)and find a new Doppler measurement strategy.Based on this finding,a Doppler frequency measurement algorithm with significantly higher measurement accuracy is obtained.In the actual data processing,compared with the existing engineering software,the accuracy of frequency of 1 second integration is about 5.5 times higher when using the new algorithm.The improved algorithm is simple and easy to implement.This improvement can be easily combined with other improvement methods of PLL,so that the performance of PLL can be further improved.
文摘A low jitter All-Digital Phase-Locked Loop (ADPLL) used as a clock generator is designed. The Digital-Controlled Oscillator (DCO) for this ADPLL is a seven-stage ring oscillator with the delay of each stage changeable. Based on the Impulse Sensitivity Function (ISF) analysis, an effective way is proposed to reduce the ADPLL's jitter by the careful design of the sizes of the inverters used in the DCO with a simple architecture other than a complex one. The ADPLL is implemented in a 0.18μm CMOS process with 1.SV supply voltage, occupies 0.046mm^2 of on-chip area. According to the measured results, the ADPLL can operate from 108MHz to 304MHz, and the peak-to-peak jitter is 139ps when the DCO's output frequency is 188MHz.
基金Supported by the National Natural Science Foundation of China (No. 61106024, 60901012, 60976029) , the National High Technology Research and Development Program of China (No. 2011AA010301 ), and the Science and Technology Program of Southeast University (No. K J2010402 ).
文摘A Monolithic integrated phase locked-loop (PLL) with a low phase noise is proposed in this paper. Several techniques are utilized to improve the performance of the PLL which works at the milli- meter-wave band. The on-chip high-Q eoplanar waveguides (CPWs) are utilized in the resonant tank and the differential current amplifier with a resonator is used to realize the VCO. In the output buffer circuit, several stages of cascaded source-followers connect and differential amplifiers are adopted to improve the driving capability of the PLL' s output signals. An improved analog multiplier topology is also used in the PD circuit to improve the gain of the PD. The proposed PLL is realized with a 0.2p, m GaAs pseudomorphie high electron mobility transistor (PHEMT) process. At 10 kHz offset from the center frequency, the measured output phase noise of the PLL output is only -88.83dBc/Hz. The circuit exhibits a low root mean sauare (RMS) litter of 1.68Ds.
文摘This paper presents a single-phase Z-source inverter as a power conditioning system for a single phase utility connected system. Z-source inverter is a single-stage topology that has buck-boost feature, which is possible because of additional shoot through state introduced in zero state of the conventional inverter pulse width modulation and provides desired output AC voltage. Small distributed generation (DG) system with alternate energy sources requires power conditioning units with low cost, high efficiency and tolerance to wide range of input voltage variation and has to perform various functions such as dc-ac conversion, system control and achieve power quality norms. To meet some of these requirements a two-loop control strategy for ac side control with grid current feedback with PI control and inner filter capacitor current feedback with proportional control and on dc side PID control for Z-source capacitor voltage regulation are employed, which gives good transient response also suppress load and source disturbances effectively. Theoretical analysis of proposed scheme is established and then simulation results are presented to validate proposed control strategy.
基金supported in part by the Natural Science Foundation of China(No.52077144)the Youth Innovative Research Team of Science and Technology Scheme,Sichuan Province,China(No.22CXTD0066).
文摘Fractional-order control(FOC)has gained significant attention in power system applications due to their ability to enhance performance and increase stability margins.In grid-connected converter(GCC)systems,the synchronous reference frame phase-locked loop(SRF-PLL)plays a critical role in grid synchronization for renewable power generation.However,there is a notable research gap regarding the application of FOC to the SRF-PLL.This paper proposes a fractional-order SRF-PLL(FO-SRF-PLL)that incorporates FOC to accurately track the phase angle of the terminal voltage,thereby improving the efficiency of grid-connected control.The dynamic performance of the proposed FO-SRF-PLL is evaluated under varying grid conditions.A comprehensive analysis of the small-signal stability of the GCC system employing the FO-SRF-PLL is also presented,including derived small-signal stability conditions.The results demonstrate that the FO-SRF-PLL significantly enhances robustness against disturbances compared with the conventional SRF-PLL.Furthermore,the GCC system with the FO-SRF-PLL maintains stability even under weak grid conditions,showing superior stability performance over the SRF-PLL.Finally,both simulation and experimental results are provided to validate the analysis and conclusions presented in this paper.