Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ...Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ is studied in the equal world-sheet time framework on the hyperplanes defined by the world-sheet time σ0=τ=constant and the LFQ in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+= (τ+σ) =constant. The light-front theory is seen to be a constrained system in the sense of Dirac in contrast to the instant-form theory. However, owing to the gauge anomalous nature of these theories, both of these theories are seen to lack the usual string gauge symmetries defined by the world-sheet reparametrization invariance (WSRI) and the Weyl invariance (WI). In the present work we show that these theories when considered in the presence of background gauge fields such as the NSNS 2-form gauge field Bαβ(σ,τ) or in the presence of U(1) gauge field Aα(σ,τ) and the constant scalar axion field C(σ,τ), then they are seen to possess the usual string gauge symmetries (WSRI and WI). In fact, these background gauge fields are seen to behave as the Wess-Zumino or Stueckelberg fields and the terms containing these fields are seen to behave as Wess-Zumino or Stueckelberg terms for these theories.展开更多
In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the PO...In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.展开更多
In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on t...In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on the hyperplanes defined by the world- sheet time . In the present work we quantize the same theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time , using the standard constraint quantization techniques in the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac, which is in contrast to the corresponding case of the instant-form theory, where the theory remains unconstrained in the sense of Dirac. The light-front theory is seen to possess a set of twenty six primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.展开更多
The Chern-Simons theory in two-space one-time dimensions is quantized on the light-front under appropriate gauge-fixing conditions using the Hamiltonian, path integral and BRST formulations.
In this paper, a four-dimensional coordinated path planning algorithm for multiple UAVs is proposed, in which time variable is taken into account for each UAV as well as collision free and obstacle avoidance. A Spatia...In this paper, a four-dimensional coordinated path planning algorithm for multiple UAVs is proposed, in which time variable is taken into account for each UAV as well as collision free and obstacle avoidance. A Spatial Refined Voting Mechanism(SRVM) is designed for standard Particle Swarm Optimization(PSO) to overcome the defects of local optimal and slow convergence.For each generation candidate particle positions are recorded and an adaptive cube is formed with own adaptive side length to indicate occupied regions. Then space voting begins and is sorted based on voting results, whose centers with bigger voting counts are seen as sub-optimal positions. The average of all particles of corresponding dimensions are calculated as the refined solutions. A time coordination method is developed by generating specified candidate paths for every UAV, making them arrive the same destination with the same time consumption. A spatial-temporal collision avoidance technique is introduced to make collision free. Distance to destination is constructed to improve the searching accuracy and velocity of particles. In addition, the objective function is redesigned by considering the obstacle and threat avoidance, Estimated Time of Arrival(ETA), separation maintenance and UAV self-constraints. Experimental results prove the effectiveness and efficiency of the algorithm.展开更多
In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where...In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.展开更多
The article initially reviews various works describing the physical model (PM) of Michelson’s interferometric experiment (ME), represented by the race between two swimmers Sw1, Sw2 (or boats, or planes, or sound sign...The article initially reviews various works describing the physical model (PM) of Michelson’s interferometric experiment (ME), represented by the race between two swimmers Sw1, Sw2 (or boats, or planes, or sound signals, etc.). The two swimmers must each swim the same distance, but Sw1 will swim along the river flow, and Sw2 will swim perpendicularly to this direction. In all such works, it is considered that Sw2’s path will require less time and that it will reach the start point first. However, in this work, it has been determined that in order to make this possible, Sw2 must not observe the orthogonality rule of his start direction. This action would be deceitful to the arbiters and thus considered as non-fair-play towards Sw1. The article proves by swimming times calculus, that if the fair-play rules are observed, then the correct crosswise path (in water reference frame) is a right triangle instead of the isosceles triangle considered by Michelson. Consequently, the two times shall be perfectly equal and the race ends in a tie, and the myth of Sw2 as the race winner shall be debunked. Note that the same result shall also be applicable to Michelson’s interferometric experiment (ME) as well as to any similar experiment. Therefore, utilising the isosceles triangle as the transversal path in PM and also in ME is an erroneous act.展开更多
Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in the ...Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in the equal world-sheet time framework on the hyperplanes defined by the world- sheet time σ0=τ=constant . The light-front quantization (LFQ) of this theory without a scalar dilaton field has also been studied by us recently. In the present work we study the LFQ of this theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+=τ+σ=constant , using the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac. The light-front theory is seen to possess a set of twenty seven primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.展开更多
Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and ...Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors.展开更多
A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tange...A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.展开更多
The going global strategy of Chinese literature is a vital part of the going global strategy of Chinese culture. In recent years,the Chinese government has launched and strongly supported a series of activities and pr...The going global strategy of Chinese literature is a vital part of the going global strategy of Chinese culture. In recent years,the Chinese government has launched and strongly supported a series of activities and projects to promote this strategy,but little effect has been produced. Starting from analyzing the predicament and reasons of the current strategy,the essay suggests four strategic paths: enhancing the overall strength of the country to promote the international influence of Chinese culture,strengthening cultural awareness and cultural introspection,integrating the nationality and cosmopolitan of literature and establishing a market-oriented literary translation mechanism.展开更多
Under the background of"Digital Commerce for Rural Vitalization",rural E-commerce has experienced rapid development.However,agricultural products like strawberries,often produced by small-scale,fragmented,an...Under the background of"Digital Commerce for Rural Vitalization",rural E-commerce has experienced rapid development.However,agricultural products like strawberries,often produced by small-scale,fragmented,and less competitive individual farmers,struggle to meet the compliance and scalability demands of E-commerce,thereby constraining high-quality local economic development.Aiming to address this issue,this paper,guided by relevant policies and strategies,employs case analysis and logical deduction to explore the industrialization path of the"Cooperative+E-commerce"model for the strawberry industry.The research finds that by optimizing the cooperative's organizational structure,implementing multi-channel E-commerce strategies,upgrading the supply chain(including cold chain and quality traceability),and engaging in collaborative brand building,a robust industrial system can be formed.Supplemented by benefit evaluation,policy support,and regulatory oversight,this system can effectively bridge small-scale production with the broader market.This study concludes that this pathway can enhance the added value of the strawberry industry,increase farmer incomes,and provide practical insights for promoting high-quality local economic development.展开更多
A novel modified four path method (FPM) is presented for calculating coupling field of super-low altitude aircraft target. Based on the hybrid method PO + MEC (Physical Optics and Method of Equivalent Currents), the a...A novel modified four path method (FPM) is presented for calculating coupling field of super-low altitude aircraft target. Based on the hybrid method PO + MEC (Physical Optics and Method of Equivalent Currents), the antenna radiation pattern is introduced to consider the multipath interference from side lobe of seeker. The modified FPM is used to calculate the coupling field from super-low altitude aircraft target above different terrestrial environments. The curves of scattering coefficient are analyzed. The influences of height of target, root mean square (RMS), and incident angle on coupling field characteristics are discussed. The simulation results can be used for reference in detection for super-low altitude target and optimization for radar system.展开更多
This paper is devoted to path-dependent kinetics equations arising, in particular, from the analysis of the coupled backward-forward systems of equations of mean field games. We present local well-posedness, global ex...This paper is devoted to path-dependent kinetics equations arising, in particular, from the analysis of the coupled backward-forward systems of equations of mean field games. We present local well-posedness, global existence and some regularity results for these equations.展开更多
This paper presents an FBCRI(feedback based compositional rule of inference)based novel path planning method to satisfy the requirements of real-time navigation,smoothness optimization and probabilistic obstacle avoid...This paper presents an FBCRI(feedback based compositional rule of inference)based novel path planning method to satisfy the requirements of real-time navigation,smoothness optimization and probabilistic obstacle avoidance.With local path-searching behaviors in regional ranges and global goal-seeking behaviors in holistic ranges,the method infers behavior weights using fuzzy reasoning embedded with feedback,and then coordinates the behaviors to generate new reference waypoints.In view of the deterministic decisions and the uncertain states of a UAV(unmanned air vehicle),chance constraints are adopted to probabilistically guarantee the UAV’s safety at a required level.Simulation results in representative scenes prove that the method is able to rapidly generate convergent paths in obstacle-rich environments,as well as highly improve the path quality with respect to smoothness and probabilistic safety.展开更多
Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method res...Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.展开更多
文摘Recently we have studied the instant-form quantization (IFQ) and the light-front quantization (LFQ) of the conformally gauge-fixed Polyakov D1 brane action using the Hamiltonian and path integral formulations. The IFQ is studied in the equal world-sheet time framework on the hyperplanes defined by the world-sheet time σ0=τ=constant and the LFQ in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+= (τ+σ) =constant. The light-front theory is seen to be a constrained system in the sense of Dirac in contrast to the instant-form theory. However, owing to the gauge anomalous nature of these theories, both of these theories are seen to lack the usual string gauge symmetries defined by the world-sheet reparametrization invariance (WSRI) and the Weyl invariance (WI). In the present work we show that these theories when considered in the presence of background gauge fields such as the NSNS 2-form gauge field Bαβ(σ,τ) or in the presence of U(1) gauge field Aα(σ,τ) and the constant scalar axion field C(σ,τ), then they are seen to possess the usual string gauge symmetries (WSRI and WI). In fact, these background gauge fields are seen to behave as the Wess-Zumino or Stueckelberg fields and the terms containing these fields are seen to behave as Wess-Zumino or Stueckelberg terms for these theories.
基金supported by the Aeronautical Science Foundation of China(20135153031 20135553035 2017ZC53033)
文摘In order to enhance the capability of tracking targets autonomously of unmanned aerial vehicle (UAV), the partially observable Markov decision process (POMDP) model for UAV path planning is established based on the POMDP framework. The elements of the POMDP model are analyzed and described. The state transfer law in the model can be described by the method of interactive multiple model (IMM) due to the diversity of the target motion law, which is used to switch the motion model to accommodate target maneuvers, and hence improving the tracking accuracy. The simulation results show that the model can achieve efficient planning for the UAV route, and effective tracking for the target. Furthermore, the path planned by this model is more reasonable and efficient than that by using the single state transition law.
文摘In a recent paper we have studied the Hamiltonian and path integral quantizations of the conformally gauge-fixed Polyakov D1 brane action in the instant-form of dynamics using the equal world-sheet time framework on the hyperplanes defined by the world- sheet time . In the present work we quantize the same theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time , using the standard constraint quantization techniques in the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac, which is in contrast to the corresponding case of the instant-form theory, where the theory remains unconstrained in the sense of Dirac. The light-front theory is seen to possess a set of twenty six primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.
文摘The Chern-Simons theory in two-space one-time dimensions is quantized on the light-front under appropriate gauge-fixing conditions using the Hamiltonian, path integral and BRST formulations.
基金co-supported by China Scholarship Council (No. 201604000003)the National Natural Science Foundation of China (Nos. U1433203, U1533119 and L142200032)the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No. 61221061)
文摘In this paper, a four-dimensional coordinated path planning algorithm for multiple UAVs is proposed, in which time variable is taken into account for each UAV as well as collision free and obstacle avoidance. A Spatial Refined Voting Mechanism(SRVM) is designed for standard Particle Swarm Optimization(PSO) to overcome the defects of local optimal and slow convergence.For each generation candidate particle positions are recorded and an adaptive cube is formed with own adaptive side length to indicate occupied regions. Then space voting begins and is sorted based on voting results, whose centers with bigger voting counts are seen as sub-optimal positions. The average of all particles of corresponding dimensions are calculated as the refined solutions. A time coordination method is developed by generating specified candidate paths for every UAV, making them arrive the same destination with the same time consumption. A spatial-temporal collision avoidance technique is introduced to make collision free. Distance to destination is constructed to improve the searching accuracy and velocity of particles. In addition, the objective function is redesigned by considering the obstacle and threat avoidance, Estimated Time of Arrival(ETA), separation maintenance and UAV self-constraints. Experimental results prove the effectiveness and efficiency of the algorithm.
文摘In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.
文摘The article initially reviews various works describing the physical model (PM) of Michelson’s interferometric experiment (ME), represented by the race between two swimmers Sw1, Sw2 (or boats, or planes, or sound signals, etc.). The two swimmers must each swim the same distance, but Sw1 will swim along the river flow, and Sw2 will swim perpendicularly to this direction. In all such works, it is considered that Sw2’s path will require less time and that it will reach the start point first. However, in this work, it has been determined that in order to make this possible, Sw2 must not observe the orthogonality rule of his start direction. This action would be deceitful to the arbiters and thus considered as non-fair-play towards Sw1. The article proves by swimming times calculus, that if the fair-play rules are observed, then the correct crosswise path (in water reference frame) is a right triangle instead of the isosceles triangle considered by Michelson. Consequently, the two times shall be perfectly equal and the race ends in a tie, and the myth of Sw2 as the race winner shall be debunked. Note that the same result shall also be applicable to Michelson’s interferometric experiment (ME) as well as to any similar experiment. Therefore, utilising the isosceles triangle as the transversal path in PM and also in ME is an erroneous act.
文摘Recently we have studied the instant-form quantization (IFQ) of the conformally gauge-fixed Polyakov D1 brane action with and without a scalar dilaton field using the Hamiltonian and path integral formulations in the equal world-sheet time framework on the hyperplanes defined by the world- sheet time σ0=τ=constant . The light-front quantization (LFQ) of this theory without a scalar dilaton field has also been studied by us recently. In the present work we study the LFQ of this theory in the equal light-cone world-sheet time framework, on the hyperplanes of the light-front defined by the light-cone world-sheet time σ+=τ+σ=constant , using the Hamiltonian and path integral formulations. The light-front theory is seen to be a constrained system in the sense of Dirac. The light-front theory is seen to possess a set of twenty seven primary second-class contraints. In the present work Hamiltonian and path integral quantizations of this theory are studied on the light-front.
文摘Seeking shortest travel times through smart algorithms may not only optimize the travel times but also reduce carbon emissions, such as CO2, CO and Hydro-Carbons. It can also result in reduced driver frustrations and can increase passenger expectations of consistent travel times, which in turn points to benefits in overall planning of day schedules. Fuel consumption savings are another benefit from the same. However, attempts to elect the shortest path as an assumption of quick travel times, often work counter to the very objective intended and come with the risk of creating a “Braess Paradox” which is about congestion resulting when several drivers attempt to elect the same shortest route. The situation that arises has been referred to as the price of anarchy! We propose algorithms that find multiple shortest paths between an origin and a destination. It must be appreciated that these will not yield the exact number of Kilometers travelled, but favourable weights in terms of travel times so that a reasonable allowable time difference between the multiple shortest paths is attained when the same Origin and Destinations are considered and favourable responsive routes are determined as variables of traffic levels and time of day. These routes are selected on the paradigm of route balancing, re-routing algorithms and traffic light intelligence all coming together to result in optimized consistent travel times whose benefits are evenly spread to all motorist, unlike the Entropy balanced k shortest paths (EBkSP) method which favours some motorists on the basis of urgency. This paper proposes a Fully Balanced Multiple-Candidate shortest path (FBMkP) by which we model in SUMO to overcome the computational overhead of assigning priority differently to each travelling vehicle using intelligence at intersections and other points on the vehicular network. The FBMkP opens up traffic by fully balancing the whole network so as to benefit every motorist. Whereas the EBkSP reserves some routes for cars on high priority, our algorithm distributes the benefits of smart routing to all vehicles on the network and serves the road side units such as induction loops and detectors from having to remember the urgency of each vehicle. Instead, detectors and induction loops simply have to poll the destination of the vehicle and not any urgency factor. The minimal data being processed significantly reduce computational times and the benefits all vehicles. The multiple-candidate shortest paths selected on the basis of current traffic status on each possible route increase the efficiency. Routes are fewer than vehicles so possessing weights of routes is smarter than processing individual vehicle weights. This is a multi-objective function project where improving one factor such as travel times improves many more cost, social and environmental factors.
基金Supported by National Natural Science Foundation of China(Grant No.50875171)National Hi-tech Research and Development Program of China(863 Program,Grant No.2009AA04Z150)
文摘A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machining. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this paper presents an optimal feed interpolator based on G^2 continuous Bézier curves for the linear tool path. First, the areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). CSSs in every area are compressed and fitted into a G^2 Continuous Bézier curve by using the least square method. Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G^0 continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, the G^2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the proposed method can generate smooth path, decrease the amount of segments and reduce machining time for machining of linear tool path. The proposed research provides an effective method for high-speed machining of complex 2-D/3-D profiles described by short line segments.
基金The study has been supported by Center for Translation Studies of Guangdong University of Foreign Studies(Fund No.CTS201711B).
文摘The going global strategy of Chinese literature is a vital part of the going global strategy of Chinese culture. In recent years,the Chinese government has launched and strongly supported a series of activities and projects to promote this strategy,but little effect has been produced. Starting from analyzing the predicament and reasons of the current strategy,the essay suggests four strategic paths: enhancing the overall strength of the country to promote the international influence of Chinese culture,strengthening cultural awareness and cultural introspection,integrating the nationality and cosmopolitan of literature and establishing a market-oriented literary translation mechanism.
基金General Project of Philosophy and Social Sciences Research in Universities of Jiangsu Province,2024(2024SJYB1650).
文摘Under the background of"Digital Commerce for Rural Vitalization",rural E-commerce has experienced rapid development.However,agricultural products like strawberries,often produced by small-scale,fragmented,and less competitive individual farmers,struggle to meet the compliance and scalability demands of E-commerce,thereby constraining high-quality local economic development.Aiming to address this issue,this paper,guided by relevant policies and strategies,employs case analysis and logical deduction to explore the industrialization path of the"Cooperative+E-commerce"model for the strawberry industry.The research finds that by optimizing the cooperative's organizational structure,implementing multi-channel E-commerce strategies,upgrading the supply chain(including cold chain and quality traceability),and engaging in collaborative brand building,a robust industrial system can be formed.Supplemented by benefit evaluation,policy support,and regulatory oversight,this system can effectively bridge small-scale production with the broader market.This study concludes that this pathway can enhance the added value of the strawberry industry,increase farmer incomes,and provide practical insights for promoting high-quality local economic development.
文摘A novel modified four path method (FPM) is presented for calculating coupling field of super-low altitude aircraft target. Based on the hybrid method PO + MEC (Physical Optics and Method of Equivalent Currents), the antenna radiation pattern is introduced to consider the multipath interference from side lobe of seeker. The modified FPM is used to calculate the coupling field from super-low altitude aircraft target above different terrestrial environments. The curves of scattering coefficient are analyzed. The influences of height of target, root mean square (RMS), and incident angle on coupling field characteristics are discussed. The simulation results can be used for reference in detection for super-low altitude target and optimization for radar system.
文摘This paper is devoted to path-dependent kinetics equations arising, in particular, from the analysis of the coupled backward-forward systems of equations of mean field games. We present local well-posedness, global existence and some regularity results for these equations.
基金National Nature Science Foundation of China(60904066)
文摘This paper presents an FBCRI(feedback based compositional rule of inference)based novel path planning method to satisfy the requirements of real-time navigation,smoothness optimization and probabilistic obstacle avoidance.With local path-searching behaviors in regional ranges and global goal-seeking behaviors in holistic ranges,the method infers behavior weights using fuzzy reasoning embedded with feedback,and then coordinates the behaviors to generate new reference waypoints.In view of the deterministic decisions and the uncertain states of a UAV(unmanned air vehicle),chance constraints are adopted to probabilistically guarantee the UAV’s safety at a required level.Simulation results in representative scenes prove that the method is able to rapidly generate convergent paths in obstacle-rich environments,as well as highly improve the path quality with respect to smoothness and probabilistic safety.
基金FoundationoftheRoboticsLaboratoryChineseAcademyofSciences (No :RL2 0 0 0 0 2 )
文摘Previously, researchers raised the accuracy for a robot′s hand to track a specified path in Cartesian space mainly through increasing the number of knots on the path and the segments of the path. But, this method resulted in the heavier on line computational burden for the robot controller. In this paper, aiming at this drawback, the authors propose a new kind of real time accurate hand path tracking and joint trajectory planning method for robots. Through selecting some extra knots on the specified hand path by a certain rule, which enables the number of knots on each segment to increase from two to four, and through introducing a sinusoidal function and a cosinoidal function to the joint displacement equation of each segment, this method can raise the path tracking accuracy of robot′s hand greatly but does not increase the computational burden of robot controller markedly.