BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,b...BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,brexanolone,zuranolone)targeting the GABA-A receptor were introduced.The zona incerta(ZI),an inhibitory subthalamic region mainly composed of GABAergic neurons,has been implicated in emotional regulation.Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms,while activation of ZI neurons in mice can either worsen or alleviate anxiety.Currently,there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents.AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice.METHODS A chronic restraint stress(CRS)model was utilized to induce depression in mice.Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI.Additionally,chemogenetic techniques were employed to modulate ZI GABAergic neurons.The performance of the mice in behavioral tests for depression and anxiety was observed.RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice.Twenty-eight days after the CRS model was established,depression-like and anxiety-like behaviors were observed in the mice.The excitability of GABAergic neurons in the ZI was reduced.Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors.Conversely,inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice.CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice,suggesting that these neurons could be a potential therapeutic target for treating depression.展开更多
Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 p...Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibition.In same concentration on INa at different times,longer time glutamate affected greater inhibition.And glutamate could significantly shift activation curve of INa to the right and make inactivation curve of INa negative drift.Conclusion Glutamate can inhibit voltage-dependent sodium channel.Its blockage on INa has voltage-dependent,time-dependent,and dose-dependent characteristics.展开更多
目的旨在阐明蛋白酪氨酸磷酸酶非受体型6(tyrosine protein phosphatase non-receptor type 6,PTPN6)是否对心脏HERG钾通道电流具有调控的作用。方法聚合酶链反应(polymerase chain reaction,PCR)技术构建pcDNA3.1-PTPN6-EGFP质粒;应用...目的旨在阐明蛋白酪氨酸磷酸酶非受体型6(tyrosine protein phosphatase non-receptor type 6,PTPN6)是否对心脏HERG钾通道电流具有调控的作用。方法聚合酶链反应(polymerase chain reaction,PCR)技术构建pcDNA3.1-PTPN6-EGFP质粒;应用脂质体Lipofectamine2000将各种质粒转染进入HEK293细胞;应用膜片钳技术分别检测对照组(pcDNA3.0-HERG单独转染HEK293细胞)、PTPN6过度表达组(pcDNA3.0-HERG和pcDNA3.1-PTPN6-EGFP共转染HEK293细胞)以及抑制剂组(pcDNA3.0-HERG和pcDNA3.1-PTPN6-EGFP共转染HEK293细胞,并加入蛋白酪氨酸磷酸酶抑制剂正钒酸钠)的HERG钾通道的脉冲电流最大电流密度、尾电流最大电流密度以及去激活时间常数Tau等。结果成功构建了pcDNA3.1-PTPN6-EGFP质粒,测序结果表明基因序列正确,荧光显微镜下可观察到HEK293细胞中绿色荧光蛋白表达;全细胞膜片钳电生理检测发现,PTPN6过度表达组的脉冲电流最大电流密度[(36.42±2.76)pA/pF]、尾电流最大电流密[(84.73±7.18)pA/pF]均较对照组[(45.92±3.18)pA/pF、(108.43±7.98)pA/pF]显著降低,差异有统计学意义(P<0.05);而抑制剂组脉冲电流最大电流密度、尾电流最大电流密度[(47.10±2.96)pA/pF、(110.52±7.87)pA/pF]均较PTPN6过度表达组明显增大,差异有统计学意义(P<0.05);PTPN6过度表达组失活时间常数Tau[(785.59±90.05)ms]较对照组[(440.7±49.49)ms]明显延长,差异有统计学意义(P<0.05)。结论 PTPN6过度表达能使HERG钾通道的电流密度降低,且这一作用能被酪氨酸磷酸酶抑制剂逆转,提示PTPN6能通过催化HERG钾通道去磷酸化而发挥负性调控HERG钾通道电流的作用。展开更多
基金Supported by the Natural Science Foundation of Xiaogan,China,No.XGKJ2023010036.
文摘BACKGROUND Depression is a prevalent affective disorder,but its pathophysiology remains unclear.Dysfunction in the gamma-aminobutyric acid(GABA)-ergic system may contribute to its onset.Recently,antidepressants(e.g.,brexanolone,zuranolone)targeting the GABA-A receptor were introduced.The zona incerta(ZI),an inhibitory subthalamic region mainly composed of GABAergic neurons,has been implicated in emotional regulation.Deep brain stimulation of the ZI in humans affects anxiety and depression symptoms,while activation of ZI neurons in mice can either worsen or alleviate anxiety.Currently,there is no direct evidence linking GABAergic neurons in the ZI to depression-like behaviors in rodents.AIM To explore the relationship between GABAergic neurons in the ZI and depression-like behaviors in mice.METHODS A chronic restraint stress(CRS)model was utilized to induce depression in mice.Whole-cell patch-clamp recordings assessed the excitability changes of GABAergic neurons in the ZI.Additionally,chemogenetic techniques were employed to modulate ZI GABAergic neurons.The performance of the mice in behavioral tests for depression and anxiety was observed.RESULTS The findings indicated that GABAergic neurons in the ZI were closely associated with depression-like behaviors in mice.Twenty-eight days after the CRS model was established,depression-like and anxiety-like behaviors were observed in the mice.The excitability of GABAergic neurons in the ZI was reduced.Chemogenetic activation of these neurons alleviated CRS-induced depression-like and anxiety-like behaviors.Conversely,inhibition of GABAergic neurons in the ZI led to changes in emotion-related behavioral outcomes in mice.CONCLUSION Activity of GABAergic neurons in the ZI was closely associated with depression-like phenotypes in mice,suggesting that these neurons could be a potential therapeutic target for treating depression.
文摘Objective To observe the effects of glutamate on sodium channel in acutely dissociated hippocampal CA1 pyramidal neurons of rats.Methods Voltage-dependent sodium currents (INa) in acutely dissociated hippocampal CA1 pyramidal neurons of neonate rats were recorded by whole-cell patchclamp of the brain slice technique when a series of doses of glutamate (100-1000μmol/L) were applied.Results Different concentrations of glutamate could inhibit INa,and higher concentration of glutamate affected greater inhibition.In same concentration on INa at different times,longer time glutamate affected greater inhibition.And glutamate could significantly shift activation curve of INa to the right and make inactivation curve of INa negative drift.Conclusion Glutamate can inhibit voltage-dependent sodium channel.Its blockage on INa has voltage-dependent,time-dependent,and dose-dependent characteristics.
文摘目的旨在阐明蛋白酪氨酸磷酸酶非受体型6(tyrosine protein phosphatase non-receptor type 6,PTPN6)是否对心脏HERG钾通道电流具有调控的作用。方法聚合酶链反应(polymerase chain reaction,PCR)技术构建pcDNA3.1-PTPN6-EGFP质粒;应用脂质体Lipofectamine2000将各种质粒转染进入HEK293细胞;应用膜片钳技术分别检测对照组(pcDNA3.0-HERG单独转染HEK293细胞)、PTPN6过度表达组(pcDNA3.0-HERG和pcDNA3.1-PTPN6-EGFP共转染HEK293细胞)以及抑制剂组(pcDNA3.0-HERG和pcDNA3.1-PTPN6-EGFP共转染HEK293细胞,并加入蛋白酪氨酸磷酸酶抑制剂正钒酸钠)的HERG钾通道的脉冲电流最大电流密度、尾电流最大电流密度以及去激活时间常数Tau等。结果成功构建了pcDNA3.1-PTPN6-EGFP质粒,测序结果表明基因序列正确,荧光显微镜下可观察到HEK293细胞中绿色荧光蛋白表达;全细胞膜片钳电生理检测发现,PTPN6过度表达组的脉冲电流最大电流密度[(36.42±2.76)pA/pF]、尾电流最大电流密[(84.73±7.18)pA/pF]均较对照组[(45.92±3.18)pA/pF、(108.43±7.98)pA/pF]显著降低,差异有统计学意义(P<0.05);而抑制剂组脉冲电流最大电流密度、尾电流最大电流密度[(47.10±2.96)pA/pF、(110.52±7.87)pA/pF]均较PTPN6过度表达组明显增大,差异有统计学意义(P<0.05);PTPN6过度表达组失活时间常数Tau[(785.59±90.05)ms]较对照组[(440.7±49.49)ms]明显延长,差异有统计学意义(P<0.05)。结论 PTPN6过度表达能使HERG钾通道的电流密度降低,且这一作用能被酪氨酸磷酸酶抑制剂逆转,提示PTPN6能通过催化HERG钾通道去磷酸化而发挥负性调控HERG钾通道电流的作用。