In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …...In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …, 5}, a_1,…, a_k are fixed nonzero reals when p ∈ {1,3,5} and are fixed positive reals when p ∈{2,4}.展开更多
In this paper, we establish an inequality for the volumes of K and its radial p-th mean body R_pK by L_p-dual mixed volume. Further, the Shephard-type problem and a monotonitic inequality of R_pK are shown when p〉0 .
This paper mainly tends to utilize Razumikhin-type theorems to investigate p-th moment stability for a class of stochastic switching nonlinear systems with delay. Based on the Lyapunov-Razumik- hin methods, some suffi...This paper mainly tends to utilize Razumikhin-type theorems to investigate p-th moment stability for a class of stochastic switching nonlinear systems with delay. Based on the Lyapunov-Razumik- hin methods, some sufficient conditions are derived to check the stability of stochastic switching nonlinear systems with delay. One numerical example is provided to demonstrate the effectiveness of the results.展开更多
The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo[SIAM J.Matrix Anal.Appl.,28:2(2006),503-523]for approximating the principal p-th root of a matrix.We construct a...The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo[SIAM J.Matrix Anal.Appl.,28:2(2006),503-523]for approximating the principal p-th root of a matrix.We construct and analyze an incremental Chebyshev method with better numerical behavior.We present a convergence and numerical analysis of the method,where we compare it with the corresponding incremental Newton method.The new method has order of convergence three and is stable and more efficient than the incremental Newton method.展开更多
考虑疾病传播过程中的随机干扰,运用随机人口建模中参数扰动的标准化技术,建立了一类具有随机扰动的传染病SEIR(susceptible-exposed but not infectious-infectious-removed)模型,证明了模型解的存在唯一性及非负性,并研究了无病平衡...考虑疾病传播过程中的随机干扰,运用随机人口建模中参数扰动的标准化技术,建立了一类具有随机扰动的传染病SEIR(susceptible-exposed but not infectious-infectious-removed)模型,证明了模型解的存在唯一性及非负性,并研究了无病平衡点满足p阶矩指数稳定的条件.研究结果为传染病预防与控制提供一定的理论依据与决策支持.展开更多
文摘In this paper, using the Brzdek's fixed point theorem [9,Theorem 1] in non-Archimedean(2,β)-Banach spaces, we prove some stability and hyperstability results for an p-th root functional equation ■where p∈{1, …, 5}, a_1,…, a_k are fixed nonzero reals when p ∈ {1,3,5} and are fixed positive reals when p ∈{2,4}.
基金Supported by the National Natural Science Foundation of China (10671117)the Science Foundation of China Three Gorges University
文摘In this paper, we establish an inequality for the volumes of K and its radial p-th mean body R_pK by L_p-dual mixed volume. Further, the Shephard-type problem and a monotonitic inequality of R_pK are shown when p〉0 .
文摘This paper mainly tends to utilize Razumikhin-type theorems to investigate p-th moment stability for a class of stochastic switching nonlinear systems with delay. Based on the Lyapunov-Razumik- hin methods, some sufficient conditions are derived to check the stability of stochastic switching nonlinear systems with delay. One numerical example is provided to demonstrate the effectiveness of the results.
基金supported by project 20928/PI/18(Proyecto financiado por la Comunidad Autónoma de la Región de Murcia a través de la convocatoria de Ayudas a proyectos para el desarrollo de investigación científica y técnica por grupos competitivos,incluida en el Programa Regional de Fomento de la Investigación Científica y Técnica(Plan de Actuación 2018)de la Fundación Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia)by the Spanish national research project PID2019-108336GB-I00.This research was partially supported by Ministerio de Ciencia.
文摘The aim of this paper is to present an improvement of the incremental Newton method proposed by Iannazzo[SIAM J.Matrix Anal.Appl.,28:2(2006),503-523]for approximating the principal p-th root of a matrix.We construct and analyze an incremental Chebyshev method with better numerical behavior.We present a convergence and numerical analysis of the method,where we compare it with the corresponding incremental Newton method.The new method has order of convergence three and is stable and more efficient than the incremental Newton method.
文摘考虑疾病传播过程中的随机干扰,运用随机人口建模中参数扰动的标准化技术,建立了一类具有随机扰动的传染病SEIR(susceptible-exposed but not infectious-infectious-removed)模型,证明了模型解的存在唯一性及非负性,并研究了无病平衡点满足p阶矩指数稳定的条件.研究结果为传染病预防与控制提供一定的理论依据与决策支持.