Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SO...Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.展开更多
Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poi...Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.展开更多
Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage p...Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.展开更多
The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly unders...The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.展开更多
As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise beca...As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise because of their high energy conversion efficiency and wide range of applications.Highentropy materials(HEMs),a novel class of materials comprising several principal elements,have attracted significant interest within the materials science and energy sectors.Their distinctive structural features and adaptable functional properties offer immense potential for innovation across various applications.This review systematically covers the basic concepts,crystal structures,element selection,and major synthesis strategies of HEMs,and explores in detail the specific applications of these materials in SOCs,including its potential as air electrodes,fuel electrodes,electrolytes,and interconnects(including barrier coatings).By analyzing existing studies,this review reveals the significant advantages of HEMs in enhancing the performance,anti-poisoning,and stability of SOCs;highlights the key areas and challenges for future research;and looks into possible future directions.展开更多
With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic...With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate.However,few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients.Similarly in Alzheimer’s disease and other neurological disorders,synaptic dysfunction is recognized as the main reason for cognitive decline.Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system.Recently,nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia.This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction,neuroinflammation,oxidative stress,and blood-brain barrier dysfunction that underlie the progress of vascular dementia.Additionally,we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.展开更多
Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,a...Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.展开更多
P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process o...P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.展开更多
Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expre...Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.展开更多
In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and...In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.展开更多
Enhanced UV-B radiation represents a major environmental factor impacting global cereal production.Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops.Recently,engi...Enhanced UV-B radiation represents a major environmental factor impacting global cereal production.Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops.Recently,engineered nanoparticles,particularly cerium oxide nanoparticles(CeO_(2)-NPs),have attracted widespread interest for their ability to boost plant tolerance to a range of abiotic stresses.This study investigates how CeO_(2)-NPs application affects the morphology,physiology,biochemistry,and transcriptomics profiles of wheat seedling roots subjected to enhanced UV-B stress.The findings demonstrate that CeO_(2)-NPs notably promoted root length,fresh and dry weights,and root activity(p<0.05)under enhanced UV-B stress.CeO_(2)-NP treatment reduced the content of hydrogen peroxide<(H_(2)O_(2))and malondialdehyde(MDA)in wheat,alleviating oxidative damage in seedling roots and partially restoring the root phenotype.Under non-UV-B stress conditions,CeO_(2)-NP treatment triggered the difference of 237 transcripts in plants relative to the control group.Under enhanced UV-B stress,CeO_(2)-NP treatment exhibited differentially expressed genes(DEGs)linked to the antioxidant defense mechanism responsible for reactive oxygen species(ROS)scavenging,compared to the non-nanoparticle control.This suggests that ROS scavenging may be a key mechanism by which CeO_(2)-NPs enhance wheat resistance to enhanced UV-B radiation.This study elucidates a potential molecular mechanism through which CeO_(2)nanoparticles may enhance wheat tolerance to UV-B stress.展开更多
Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates...Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.展开更多
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a...Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.展开更多
Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The igniti...Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The ignition resistance of these alloys often depends on the protectiveness of the oxide film formed on the surface.This paper elucidates the formation mechanism of oxide film from thermodynamics and kinetics,classifying oxide films based on their layered structure to assess their protective properties.Furthermore,it comprehensively reviews the impact of characteristics on the protective effectiveness such as compactness,continuity,thickness,and mechanical properties.The paper also introduces various characterization methods for the microstructure and properties of oxide film.The primary objective of this paper is to enhance the comprehension of oxide film concerning the ignition resistance of Mg alloys and to furnish references for future advancements and research in Mg alloys with heightened ignition resistance.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac...Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral ...Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral blood pressure.While NO is catalyzed by various nitric oxide synthase(NOS)isoforms,the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear.Therefore,this study aims to investigate the regu-latory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation.Methods:Forty healthy male Sprague–Dawley(SD)rats were randomly divided into four groups:Control group(NG-nitro-D-arginine methyl ester,D-NAME),L-NAME group(non-selective NOS inhibitor,NG-nitro-L-arginine methyl ester),AG group(in-ducible NOS inhibitor group,aminoguanidine),and 7-NI group(neurological NOS in-hibitor,7-nitroindazole).Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia[15%O2,2200 m a.sl.,582 mmHg(76.5 kPa),Xining,China]using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo.Serum NO concentra-tions and blood gas analysis were measured.Results:Under normoxia,mean arterial pressure and total peripheral vascular resist-ance were increased,and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups.During hypoxia,pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups.Conclusions:This compensatory mechanism activated by inducible NOS and en-dothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress.It plays a crucial role in alleviating hypoxia-induced pulmonary arte-rial hypertension.展开更多
Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In t...Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization.展开更多
The rapid industrial growth and increasing population have led to significant pollution and deterioration of the natural atmospheric environment.Major atmospheric pollutants include NO_(2)and CO_(2).Hence,it is impera...The rapid industrial growth and increasing population have led to significant pollution and deterioration of the natural atmospheric environment.Major atmospheric pollutants include NO_(2)and CO_(2).Hence,it is imperative to develop NO_(2)and CO_(2)sensors for ambient conditions,that can be used in indoor air quality monitoring,breath analysis,food spoilage detection,etc.In the present study,two thin film nanocomposite(nickel oxide-graphene and nickel oxide-silver nanowires)gas sensors are fabricated using direct ink writing.The nano-composites are investigated for their structural,optical,and electrical properties.Later the nano-composite is deposited on the interdigitated electrode(IDE)pattern to form NO_(2)and CO_(2)sensors.The deposited films are then exposed to NO_(2)and CO_(2)gases separately and their response and recovery times are determined using a custom-built gas sensing setup.Nickel oxide-graphene provides a good response time and recovery time of 10 and 9 s,respectively for NO_(2),due to the higher electron affinity of graphene towards NO_(2).Nickel oxide-silver nanowire nano-composite is suited for CO_(2)gas because silver is an excellent electrocatalyst for CO_(2)by giving response and recovery times of 11 s each.This is the first report showcasing NiO nano-composites for NO_(2)and CO_(2)sensing at room temperature.展开更多
基金financial support from the JSPS KAKENHI Grant-in-Aid for Scientific Research(B),No.21H02035KAKENHI Grant-in-Aid for Challenging Research(Exploratory),No.21K19017+2 种基金KAKENHI Grant-in-Aid for Transformative Research Areas(B),No.21H05100National Natural Science Foundation of China,No.22409033 and No.22409035Basic and Applied Basic Research Foundation of Guangdong Province,No.2022A1515110470.
文摘Protonic solid oxide electrolysis cells(P-SOECs)are a promising technology for water electrolysis to produce green hydrogen.However,there are still challenges related key materials and anode/electrolyte interface.P-SOECs with Zr-rich electrolyte,called Zr-rich side P-SOECs,possess high thermodynamically stability under high steam concentrations but the large reaction resistances and the current leakage,thus the inferior performances.In this study,an efficient functional interlayer Ba_(0.95)La_(0.05)Fe_(0.8)Zn_(0.2)O_(3-δ)(BLFZ)in-between the anode and the electrolyte is developed.The electrochemical performances of P-SOECs are greatly enhanced because the BLFZ can greatly increase the interface contact,boost anode reaction kinetics,and increase proton injection into electrolyte.As a result,the P-SOEC yields high current density of 0.83 A cm^(-2) at 600℃ in 1.3 Vamong all the reported Zr-rich side cells.This work not only offers an efficient functional interlayer for P-SOECs but also holds the potential to achieve P-SOECs with high performances and long-term stability.
基金supported by National Natural Science Foundation of China(22279018)National Natural Science Foundation of China(22005055)Natural Science Foundation of Fujian Province(2022J01085).
文摘Solid oxide cells(SOCs)are emerging devices for efficient energy storage and conversion.However,during SOC operation,gaseous chromium(Cr)species released from Fe-Cr alloy interconnect can lead to Cr deposition and poisoning of air electrodes,causing substantial degradation in electrochemical performance and compromising the longterm stability of SOCs.This mini-review examines the mechanism of Cr deposition and poisoning in air electrodes under both fuel-cell and electrolysis modes.Furthermore,emphasis is placed on the recent advancements in strategies to mitigate Cr poisoning,offering insights into the rational design and development of active and Cr-tolerant air electrodes for SOCs.
基金supported by Fundamental Research Funds for the Central Universities(2023KYJD1008)the Science Research Projects of the Anhui Higher Education Institutions of China(2022AH051582).
文摘Reversible solid oxide cell(RSOC)is a new energy conversion device with significant applications,especially for power grid peaking shaving.However,the reversible conversion process of power generation/energy storage poses challenges for the performance and stability of air electrodes.In this work,a novel high-entropy perovskite oxide La_(0.2)Pr_(0.2)Gd_(0.2)Sm_(0.2)Sr_(0.2)Co_(0.8)Fe_(0.2)O_(3−δ)(HE-LSCF)is proposed and investigated as an air electrode in RSOC.The electrochemical behavior of HE-LSCF was studied as an air electrode in both fuel cell and electrolysis modes.The polarization impedance(Rp)of the HE-LSCF electrode is only 0.25Ω·cm^(2) at 800℃ in an air atmosphere.Notably,at an electrolytic voltage of 2 V and a temperature of 800℃,the current density reaches up to 1.68 A/cm^(2).The HE-LSCF air electrode exhibited excellent reversibility and stability,and its electrochemical performance remains stable after 100 h of reversible operation.With these advantages,HE-LSCF is shown to be an excellent air electrode for RSOC.
基金financially National Key R&D Program of China(No.2022YFA1504800)National Natural Science Foundation of China(Grant No.22325405,22372160,22321002)+1 种基金Liaoning Revitalization Talents Program(XLYC1807207)DICP I202104。
文摘The Zn-Al spinel oxide stands out as one of the most active catalysts for high-temperature methanol synthesis from CO_(2)hydrogenation.However,the structure–activity relationship of the reaction remains poorly understood due to challenges in atomic-level structural characterizations and analysis of reaction intermediates.In this study,we prepared two Zn-Al spinel oxide catalysts via coprecipitation(ZnAl-C)and hydrothermal(ZnAl-H)methods,and conducted a comparative investigation in the CO_(2)hydrogenation reaction.Surprisingly,under similar conditions,ZnAl-C exhibited significantly higher selectivity towards methanol and DME compared to ZnAl-H.Comprehensive characterizations using X-ray diffraction(XRD),Raman spectroscopy and electron paramagnetic resonance(EPR)unveiled that ZnAl-C catalyst had abundant ZnO species on its surface,and the interaction between the ZnO species and its ZnAl spinel oxide matrix led to the formation of oxygen vacancies,which are crucial for CO_(2)adsorption and activation.Additionally,state-of-the-art solid-state nuclear magnetic resonance(NMR)techniques,including ex-situ and in-situ NMR analyses,confirmed that the surface ZnO facilitates the formation of unique highly reactive interfacial formate species,which was readily hydrogenated to methanol and DME.These insights elucidate the promotion effects of ZnO on the ZnAl spinel oxide in regulating active sites and reactive intermediates for CO_(2)-to-methanol hydrogenation reaction,which is further evidenced by the significant enhancement in methanol and DME selectivity observed upon loading ZnO onto the ZnAl-H catalyst.These molecular-level mechanism understandings reinforce the idea of optimizing the ZnO-ZnAl interface through tailored synthesis methods to achieve activity-selectivity balance.
基金supported by the National Key R&D Program of China(2022YFB4004000)National Natural Science Foundation of China(U24A20542,52472210,22279057)+3 种基金Natural Science Foundation of Jiangsu Province(BK20221312)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_1465)Cultivation Program for the Excellent Doctoral Dissertation of Nanjing Tech University(2023-09)the grant of Hydrogen Energy Laboratory(No.FEUZ-2024-0009)。
文摘As global energy demand increases and environmental standards tighten,the development of efficient,eco-friendly energy conversion and storage technologies becomes crucial.Solid oxide cells(SOCs)show great promise because of their high energy conversion efficiency and wide range of applications.Highentropy materials(HEMs),a novel class of materials comprising several principal elements,have attracted significant interest within the materials science and energy sectors.Their distinctive structural features and adaptable functional properties offer immense potential for innovation across various applications.This review systematically covers the basic concepts,crystal structures,element selection,and major synthesis strategies of HEMs,and explores in detail the specific applications of these materials in SOCs,including its potential as air electrodes,fuel electrodes,electrolytes,and interconnects(including barrier coatings).By analyzing existing studies,this review reveals the significant advantages of HEMs in enhancing the performance,anti-poisoning,and stability of SOCs;highlights the key areas and challenges for future research;and looks into possible future directions.
基金supported by the National Key R&D Program of China,No.2019YFE0121200(to LQZ)the National Natural Science Foundation of China,Nos.82325017(to LQZ),82030032(to LQZ),82261138555(to DL)+2 种基金the Natural Science Foundation of Hubei Province,No.2022CFA004(to LQZ)the Natural Science Foundation of Jiangxi Province,No.20224BAB206040(to XZ)Research Project of Cognitive Science and Transdisciplinary Studies Center of Jiangxi Province,No.RZYB202201(to XZ).
文摘With an increase in global aging,the number of people affected by cerebrovascular diseases is also increasing,and the incidence of vascular dementia-closely related to cerebrovascular risk-is increasing at an epidemic rate.However,few therapeutic options exist that can markedly improve the cognitive impairment and prognosis of vascular dementia patients.Similarly in Alzheimer’s disease and other neurological disorders,synaptic dysfunction is recognized as the main reason for cognitive decline.Nitric oxide is one of the ubiquitous gaseous cellular messengers involved in multiple physiological and pathological processes of the central nervous system.Recently,nitric oxide has been implicated in regulating synaptic plasticity and plays an important role in the pathogenesis of vascular dementia.This review introduces in detail the emerging role of nitric oxide in physiological and pathological states of vascular dementia and summarizes the diverse effects of nitric oxide on different aspects of synaptic dysfunction,neuroinflammation,oxidative stress,and blood-brain barrier dysfunction that underlie the progress of vascular dementia.Additionally,we propose that targeting the nitric oxide-sGC-cGMP pathway using certain specific approaches may provide a novel therapeutic strategy for vascular dementia.
基金supported by the National Natural Science Foundation of China(No.61904073)Spring City Plan-Special Program for Young Talents(No.K202005007)+4 种基金Yunnan Talents Support Plan for Yong Talents(No.XDYC-QNRC-20220482)Yunnan Local Colleges Applied Basic Research Projects(No.202101BA070001-138)Scientific Research Fund of Yunnan Education Department(No.2023Y0883)Frontier Research Team of Kunming University 2023Key Laboratory of Artificial Microstructures in Yunnan Higher Education。
文摘Silicon-air batteries(SABs),a new type of semiconductor air battery,have a high energy density.However,some side reactions in SABs cause Si anodes to be covered by a passivation layer to prevent continuous discharge,and the anode utilization rate is low.In this work,reduced graphene oxide(RGO)fabricated via high-temperature annealing or L-ascorbic acid(L.AA)reduction was first used to obtain Si nanowires/RGO-1000(Si NWs/RGO-1000)and Si nanowires/RGO-L.AA(Si NWs/RGO-L.AA)composite anodes for SABs.It was found that RGO suppressed the passivation and self-corrosion reactions and that SABs using Si NWs/RGO-L.AA as the anode can discharge for more than 700 h,breaking the previous performance of SABs,and that the specific capacity was increased by 90.8%compared to bare Si.This work provides a new solution for the design of high specific capacity SABs with nanostructures and anode protective layers.
文摘P450 enzymes-catalyzed aromatic hydroxylation plays an important role in detoxification,biosynthesis,and potential carcinogenic effect of aromatic compounds.Though it has been explored for decades,the actual process of aromatic hydroxylation and mechanism of regioselectivity catalyzed by cytochrome P450 monooxygenases remained ambiguous.Here,we have resolved these issues.With a stable chiral organofluorine probe,and especially with X-ray data of two isolated arene oxides derivatives,we demonstrate that an arene oxide pathway is definitely involved in P450-catalyzed aromatic hydroxylation.By the capture,isolation,identification and reactivity exploration of the arene 1,2-oxide and arene 2,3-oxide intermediates,together with advanced QM calculations,the mechanism of how two intermediates go to the same product has been elucidated.In addition to the model substrate,we also confirmed that an arene oxide intermediate is involved in the P450-catalyzed hydroxylation pathway of a natural product derivative methyl cinnamate,which indicates that this intermediate appears to be universal in P450-catalyzed aromatic hydroxylation.Our work not only provides the most direct evidence for the arene oxide pathway and new insights into the regioselectivity involved in P450-catalyzed aromatic hydroxylation,but also supplies a new synthetic approach to achieve the dearomatization of aromatic compounds.
文摘Nitric oxide(NO)is a gaseous molecule produced by 3 different NO synthase(NOS)isoforms:Neural/brain NOS(nNOS/bNOS,type 1),endothelial NOS(eNOS,type 3)and inducible NOS(type 2).Type 1 and 3 NOS are constitutively expressed.NO can serve different purposes:As a vasoactive molecule,as a neurotransmitter or as an immunomodulator.It plays a key role in cerebral ischemia/reperfusion injury(CIRI).Hypoxic episodes simulate the production of oxygen free radicals,leading to mitochondrial and phospholipid damage.Upon reperfusion,increased levels of oxygen trigger oxide synthases;whose products are associated with neuronal damage by promoting lipid peroxidation,nitrosylation and excitotoxicity.Molecular pathways in CIRI can be altered by NOS.Neuroprotective effects are observed with eNOS activity.While nNOS interplay is prone to endothelial inflammation,oxidative stress and apoptosis.Therefore,nNOS appears to be detrimental.The interaction between NO and other free radicals develops peroxynitrite;which is a cytotoxic agent.It plays a main role in the likelihood of hemorrhagic events by tissue plasminogen activator(t-PA).Peroxynitrite scavengers are currently being studied as potential targets to prevent hemorrhagic transformation in CIRI.
基金supported by the National Natural Science Foundation of China(51971157)Shenzhen Science and Technology Program(JCYJ20210324115412035,JCYJ202103-24123202008,JCYJ20210324122803009 and ZDS-YS20210813095534001)Guangdong Foundation for Basic and Applied Basic Research Program(2021A1515110880).
文摘In pursuit of more efficient and stable electrochemical energy storage materials,composite materials consisting of metal oxides and graphene oxide have garnered significant attention due to their unique structures and exceptional properties.Graphene oxide(GO),a two-dimensional material with an extremely high specific surface area and excellent conductivity,offers new possibilities for enhancing the electrochemical performance of metal oxides.In this work,we synthesized met-al-organic framework(MOF)and GO composites by regulating the amount of GO,and successfully prepared composites of metal oxides supported by nitrogen-doped carbon frameworks and GO through a simple one-step calcination process.Based on the electrochemical tests,the optimal amount of GO was determined.This research will provide new insights into and directions for designing and synthesizing metal oxide and graphene oxide composite materials with an ideal electro-chemical performance.
基金supported by Graduate Innovation Project of Shanxi Normal University(Grant No.2021Y443).
文摘Enhanced UV-B radiation represents a major environmental factor impacting global cereal production.Researchers have explored various approaches to reduce the detrimental impact of UV-B radiation on crops.Recently,engineered nanoparticles,particularly cerium oxide nanoparticles(CeO_(2)-NPs),have attracted widespread interest for their ability to boost plant tolerance to a range of abiotic stresses.This study investigates how CeO_(2)-NPs application affects the morphology,physiology,biochemistry,and transcriptomics profiles of wheat seedling roots subjected to enhanced UV-B stress.The findings demonstrate that CeO_(2)-NPs notably promoted root length,fresh and dry weights,and root activity(p<0.05)under enhanced UV-B stress.CeO_(2)-NP treatment reduced the content of hydrogen peroxide<(H_(2)O_(2))and malondialdehyde(MDA)in wheat,alleviating oxidative damage in seedling roots and partially restoring the root phenotype.Under non-UV-B stress conditions,CeO_(2)-NP treatment triggered the difference of 237 transcripts in plants relative to the control group.Under enhanced UV-B stress,CeO_(2)-NP treatment exhibited differentially expressed genes(DEGs)linked to the antioxidant defense mechanism responsible for reactive oxygen species(ROS)scavenging,compared to the non-nanoparticle control.This suggests that ROS scavenging may be a key mechanism by which CeO_(2)-NPs enhance wheat resistance to enhanced UV-B radiation.This study elucidates a potential molecular mechanism through which CeO_(2)nanoparticles may enhance wheat tolerance to UV-B stress.
基金supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_3032).
文摘Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.
基金supported by the National Natural Science Foundation of China(Grant No.W2412060,22325902 and 52171215)the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2023002)。
文摘Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3501002)the National Natural Science Foundation of China(Grant No.52301059,No.52271009)the Shanghai Post-doctoral Excellence Program(Grant No.2023372).
文摘Magnesium and its alloys offer lightweight advantage and have extensive development prospects,particularly in aerospace.However,their flammability poses a significant barrier on the development of Mg alloys.The ignition resistance of these alloys often depends on the protectiveness of the oxide film formed on the surface.This paper elucidates the formation mechanism of oxide film from thermodynamics and kinetics,classifying oxide films based on their layered structure to assess their protective properties.Furthermore,it comprehensively reviews the impact of characteristics on the protective effectiveness such as compactness,continuity,thickness,and mechanical properties.The paper also introduces various characterization methods for the microstructure and properties of oxide film.The primary objective of this paper is to enhance the comprehension of oxide film concerning the ignition resistance of Mg alloys and to furnish references for future advancements and research in Mg alloys with heightened ignition resistance.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金financially supported by the National Natural Science Foundation of China(No.12304077)the Natural Science Foundation of Science and Technology Department of Sichuan Province(No.23NSFSC6224)+3 种基金Sichuan Science and Technology Program(No.2024NSFSC0989)the Key Laboratory of Computational Physics of Sichuan Province(No.YBUJSWL-YB-2022-03)the Material Corrosion and Protection Key Laboratory of Sichuan Province(No.2023CL14 and No.2023CL01)the National Innovation Practice Project(No.202411079005S).
文摘Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
基金This work was supported by the National Natural Science Foundation of China(grant numbers 81560301 and 81160012)the Natural Science Foundation of Qinghai Province(grant number 2022-ZJ-905)‘2022 Qinghai Province Kunlun Talents High-end Innovation and Entrepreneurship Talents’Outstanding Talent Project.
文摘Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral blood pressure.While NO is catalyzed by various nitric oxide synthase(NOS)isoforms,the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear.Therefore,this study aims to investigate the regu-latory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation.Methods:Forty healthy male Sprague–Dawley(SD)rats were randomly divided into four groups:Control group(NG-nitro-D-arginine methyl ester,D-NAME),L-NAME group(non-selective NOS inhibitor,NG-nitro-L-arginine methyl ester),AG group(in-ducible NOS inhibitor group,aminoguanidine),and 7-NI group(neurological NOS in-hibitor,7-nitroindazole).Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia[15%O2,2200 m a.sl.,582 mmHg(76.5 kPa),Xining,China]using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo.Serum NO concentra-tions and blood gas analysis were measured.Results:Under normoxia,mean arterial pressure and total peripheral vascular resist-ance were increased,and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups.During hypoxia,pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups.Conclusions:This compensatory mechanism activated by inducible NOS and en-dothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress.It plays a crucial role in alleviating hypoxia-induced pulmonary arte-rial hypertension.
基金support of the Key Science Research Project in Colleges and Universities of Anhui Province,China(No.2022AH050813)the Medical Special Cultivation Project of Anhui University of Science and Technology,China(No.YZ2023H2A002).
文摘Carbon-based foams with a three-dimensional structure can serve as a lightweight template for the rational design and control-lable preparation of metal oxide/carbon-based composite microwave absorption materials.In this study,a flake-like nickel cobaltate/re-duced graphene oxide/melamine-derived carbon foam(FNC/RGO/MDCF)was successfully fabricated through a combination of solvo-thermal treatment and high-temperature pyrolysis.Results indicated that RGO was evenly distributed in the MDCF skeleton,providing ef-fective support for the load growth of FNC on its surface.Sample S3,the FNC/RGO/MDCF composite prepared by solvothermal method for 16 h,exhibited a minimum reflection loss(RL_(min))of-66.44 dB at a thickness of 2.29 mm.When the thickness was reduced to 1.50 mm,the optimal effective absorption bandwidth was 3.84 GHz.Analysis of the absorption mechanism of FNC/RGO/MDCF revealed that its excellent absorption performance was primarily attributed to the combined effects of conduction loss,multiple reflection,scattering,in-terface polarization,and dipole polarization.
文摘The rapid industrial growth and increasing population have led to significant pollution and deterioration of the natural atmospheric environment.Major atmospheric pollutants include NO_(2)and CO_(2).Hence,it is imperative to develop NO_(2)and CO_(2)sensors for ambient conditions,that can be used in indoor air quality monitoring,breath analysis,food spoilage detection,etc.In the present study,two thin film nanocomposite(nickel oxide-graphene and nickel oxide-silver nanowires)gas sensors are fabricated using direct ink writing.The nano-composites are investigated for their structural,optical,and electrical properties.Later the nano-composite is deposited on the interdigitated electrode(IDE)pattern to form NO_(2)and CO_(2)sensors.The deposited films are then exposed to NO_(2)and CO_(2)gases separately and their response and recovery times are determined using a custom-built gas sensing setup.Nickel oxide-graphene provides a good response time and recovery time of 10 and 9 s,respectively for NO_(2),due to the higher electron affinity of graphene towards NO_(2).Nickel oxide-silver nanowire nano-composite is suited for CO_(2)gas because silver is an excellent electrocatalyst for CO_(2)by giving response and recovery times of 11 s each.This is the first report showcasing NiO nano-composites for NO_(2)and CO_(2)sensing at room temperature.