期刊文献+
共找到2,743篇文章
< 1 2 138 >
每页显示 20 50 100
New poly-types of LPSO structures in a non-equilibrium Mg_(97)Zn_(1)Y_(1.6)Ca_(0.4)alloy
1
作者 Qian-qian Jin Zi-hui Tang +5 位作者 Wen-long Xiao Xiu-yu Qu Xu-hao Han Lin Mei Xiao-hong Shao Xiu-liang Ma 《China Foundry》 2025年第1期83-89,共7页
In this study,a comprehensive analysis of microstructural features,morphology,crystal structures,and interface structures of long-period stacking ordered(LPSO)structures in a non-equilibrium Mg_(97)Zn_(1)Y_(16)Ca_(0.4... In this study,a comprehensive analysis of microstructural features,morphology,crystal structures,and interface structures of long-period stacking ordered(LPSO)structures in a non-equilibrium Mg_(97)Zn_(1)Y_(16)Ca_(0.4)alloy cast in a steel mold was carried out.The addition of Ca element plays an important role in the refinement of LPSO structure.The result reveals new poly-types including 20H F2F2F4,60R(F2F3F3)_(3),and 66H F2F3F3F2(F6)_(4)featuring a 6-Mg structure,alongside the prevalent 18R and 14H LPSO structures.The incoherent interface between 20H and the Mg matrix is split into two dislocation arrays,leading to the formation of a segment of 60R_(1).Moreover,the superstructure 116L,designated as(F2)_(18)F4,is formed through the ordered distribution of F4 stacking faults in 18R. 展开更多
关键词 lpso structures crystal structure Mg alloys heterogeneous interface
在线阅读 下载PDF
Excellent dielectric response and microwave absorption in magnetic field-induced magnetic ordered structures
2
作者 Zheng Xiu Fei Pan +7 位作者 Kai Yao Haojie Jiang Xiao Wang Lixin Li Jingli Wang Xiaona Ma Yang Yang Wei Lu 《Journal of Materials Science & Technology》 2025年第5期241-251,共11页
Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes ... Weak interactions prevent the magnetic particles from achieving excellent electromagnetic wave absorp-tion(EMA)at a low filler loading(FL).The construction of one-dimensional magnetic metal fibers(1D-MMFs)contributes to the formation of an electromagnetic(EM)coupling network,enhancing EM properties at a low FL.However,precisely controlling the length of 1D-MMFs to regulate permittivity at low FL poses a challenge.Herein,a novel magnetic field-assisted growth strategy was used to fabricate Co-based fibers with adjustable permittivity and aspect ratios.With a variety of FL changes,centimeter-level Co long fibers(Co-lf)consistently exhibited higher permittivity than Co particles and Co short fibers due to the enhancement of the effective EM coupling.The Co-lf exhibits excellent EMA performance(-54.85 dB,5.8 GHz)at 10 wt.%FL.Meanwhile,heterogeneous interfaces were introduced to increase the interfacial polarization through a fine phosphorylation design,resulting in elevated EMA performances(-51.50 dB,6.6 GHz)at 10 wt.%FL for Co_(2)P/Co long fibers.This study improves the orderliness of the particle arrangement by regulating the length of 1D-MMFs,which affects the behavior of electrons inside the fibers,providing a new perspective for improving the EMA properties of magnetic materials at a low FL. 展开更多
关键词 Cobalt micro-fiber ordered structure Hierarchical structure Electromagnetic wave absorption
原文传递
Ordered structures with Schottky heterojunction functional unit regulate immune response and osteogenesis
3
作者 Peng Yu Maofei Ran +7 位作者 Heying Ran Xuebin Yang Youzhun Fan Zhengao Wang Zhengnan Zhou Jinxia Zhai Zefeng Lin Chengyun Ning 《Journal of Materials Science & Technology》 2025年第10期276-287,共12页
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w... Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis. 展开更多
关键词 ordered structures with functional unit MACROPHAGE Implant OSTEOGENESIS Electric microenvironment
原文传递
Outstanding fatigue performance of Mg-Gd-Zn-Zr alloy enriched with SFs rather than LPSO Structure
4
作者 Yao Chen Fulin Liu +6 位作者 Yujuan Wu Liming Peng Lang Li Chao He Qiang Chen Yongjie Liu Qingyuan Wang 《Journal of Magnesium and Alloys》 2025年第1期90-100,共11页
Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparab... Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparably investigated for fatigue performances.During fatigue,the Mg nanolayers between LPSO lamellae or SFs act as the gliding channels of dislocations.However,SFs-enriched Mg exhibits outstanding fatigue strength due to solute strengthening within Mg nanolayers.Solute strengthening is assumed to contribute to the local accumulation of basal dislocations and the activation of non-basal dislocations.Dislocations are restricted locally and cannot glide long distances to specimen surfaces,which mitigates fatigue-induced extrusions and slip markings,ultimately leading to an increase in fatigue strength.These findings guide the development of RE-Mg alloys towards a synergy between high tensile and high fatigue performances. 展开更多
关键词 Long-period stacking ordered(lpso)structure Stacking faults(SFS) Mg nanolayers Solute strengthening Fatigue performances
在线阅读 下载PDF
Research Progress of Abrasive Groups Ordered Grinding Wheels
5
作者 Ye Guo Bing Chen +3 位作者 Zihao Liu Shiwei Sun Guoyue Liu Bing Guo 《Chinese Journal of Mechanical Engineering》 2025年第3期177-208,共32页
Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel prepara... Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise. 展开更多
关键词 Abrasive groups ordered grinding wheels Abrasive blocks Fine grain structured Abrasive clusters Abrasive fibers
在线阅读 下载PDF
电子束辐照过程中LPSO相结构变化
6
作者 白羽丹 肖文龙 靳千千 《科技创新与应用》 2025年第28期74-76,80,共4页
LPSO相可以大幅提高合金的机械性能,该文利用球差校正扫描透射电子显微镜原位研究LPSO相在电束辐照下的结构演变规律。研究发现电子束辐照会导致堆垛层错的转变,转变过程中存在结构非晶化转变与原子重构。随着堆垛层错数量的增加,LPSO... LPSO相可以大幅提高合金的机械性能,该文利用球差校正扫描透射电子显微镜原位研究LPSO相在电束辐照下的结构演变规律。研究发现电子束辐照会导致堆垛层错的转变,转变过程中存在结构非晶化转变与原子重构。随着堆垛层错数量的增加,LPSO相呈现选择性结构转变。此外,探讨电子束辐照诱导下LPSO相结构发生转变的潜在机理。该研究为调控Mg-M-RE合金的结构与性能提供一种新的方式。 展开更多
关键词 lpso 镁合金 电子束辐照 结构转变 堆垛层错
在线阅读 下载PDF
Long-period stacking ordered structures in Mg-3Cu-1Mn-2Zn-1Y damping alloy 被引量:2
7
作者 黄雪飞 张文征 +1 位作者 王敬丰 魏文文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1947-1953,共7页
14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu ... 14H, 18R and 24R long-period stacking ordered (LPSO) structures were observed in the as-cast Mg-3Cu-1Mn-2Zn-1Y damping alloy using transmission electron microscopy (TEM). These LPSO structures contained Mg, Y, Cu and Zn and thus they were quaternary phases. Sharp diffraction pattern of the 24R structure was obtained and the angle between and g10024R was measured to be 5.03°. During high resolution TEM observations, lattice fringes with two characteristic spacings were observed within the 24R structure. Based on the experimental results, 6H, 7H and three 8H are suggested as the building blocks of 18R, 14H and 24R structures, respectively. The 24R unit cell can be interpreted as the stacking of 8H building blocks in the same shear direction with a shear angle of about 5.03°. The imperfect 24R structures are in order or disorder arrangements of principal 8H and minor 6H blocks. This double-block structure model is also applicable to other reported defects in LPSO structures. 展开更多
关键词 magnesium alloys long-period stacking ordered structure TEM building block
在线阅读 下载PDF
Evolution of precipitates in Mg−7Gd−3Y−1Nd−1Zn−0.5Zr alloy with fine plate-like 14H-LPSO structures aged at 240℃ 被引量:4
8
作者 Yong-gang PENG Zhi-wei DU +7 位作者 Wei LIU Yong-jun LI Ting LI Xiao-lei HAN Ming-long MA Zheng PANG Jia-wei YUAN Guo-liang SHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1500-1510,共11页
The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and hig... The morphology and crystal structure of the precipitates in Mg-7Gd-3Y-1Nd-1Zn-0.5Zr(wt.%)alloy with fine plate-like 14H-LPSO structures aged at 240℃were investigated using transmission electron microscopy(TEM)and high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500℃for 2 h,andβ-type phases precipitate after the alloy is aged at 240℃.The long-period atomic stacking sequence of 14H-LPSO structures along the[0001]αdirection is ABABCACACACBABA.After being aged at 240℃for 2 h,theβ-type phases are the ordered solution clusters,zig-zag GP zones,and a small number ofβ′phases.The peak hardness is obtained at 240℃for 18 h with a Brinell hardness of 112,theβ-type phases areβ’phases and local RE-rich structures.After being aged at 240℃for 100 h,theβ-type phases areβ’,β1 andβ’F phases.β′phases nucleate from the zig-zag GP zones directly withoutβ″phases,and then transform intoβ1 phase byβ’→β’F→β1 transformations.The Zn not only can form LPSO structure,but also is the constituent element ofβ1 phases.LPSO structures have a certain hindrance to the coarsening ofβ’andβ1 along<0001>α. 展开更多
关键词 magnesium alloy ageing PRECIPITATES long-period stacking ordered(lpso)structures HAADF-STEM
在线阅读 下载PDF
Review on long-period stacking-ordered structures in Mg-Zn-RE alloys 被引量:14
9
作者 Lu, Fumin Ma, Aibin +2 位作者 Jiang, Jinghua Yang, Donghui Zhou, Qi 《Rare Metals》 SCIE EI CAS CSCD 2012年第3期303-310,共8页
The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing... The recent development of high-strength magnesium alloys is focused on the role of the strengthening phases with a novel long-period stacking-ordered (LPSO) structure. This review detailed the main factors influencing the formation of LPSO phases, including alloying ele-ments, preparation methods, and heat treatments. Furthermore, process control in structure types, formation and transformation behavior, strengthening and toughening mechanisms of the LPSO phase were discussed. Finally, the current problems and development trends of high-strength Mg-Zn-RE alloys were also put forward. 展开更多
关键词 magnesium alloys long-period stacking-ordered (lpso) structure formation TRANSFORMATION strengthening mechanisms
在线阅读 下载PDF
Mg-TM-RE系镁合金中LPSO相的研究进展 被引量:5
10
作者 罗宇伦 杨鸿 +4 位作者 董志华 蒋斌 张双艳 张丁非 潘复生 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第5期1429-1452,共24页
镁合金是最具发展潜力的轻量化材料之一,但相对较低的强度和塑性限制了其工程应用。具有堆垛有序和化学有序特征的长周期堆垛有序(LPSO)相是有望实现镁合金强韧化的新型析出相,受到了越来越广泛的关注。本文总结分析了LPSO相的原子结构... 镁合金是最具发展潜力的轻量化材料之一,但相对较低的强度和塑性限制了其工程应用。具有堆垛有序和化学有序特征的长周期堆垛有序(LPSO)相是有望实现镁合金强韧化的新型析出相,受到了越来越广泛的关注。本文总结分析了LPSO相的原子结构特征、形成和转变机制,讨论了不同合金元素对LPSO相稳定性、本征结构物性参数的影响规律,分析了LPSO相对镁合金动态再结晶行为和力学性能的影响机理,并总结了基于LPSO相发展高性能镁合金需解决的关键问题,以期为新型高强韧镁合金的发展提供参考。 展开更多
关键词 镁合金 lpso 结构物性 动态再结晶 强韧化机制
在线阅读 下载PDF
Corrosion Behavior of Mg-Zn-Y Alloy with Long-period Stacking Ordered Structures 被引量:18
11
作者 Jinshan Zhang Jidong Xu Weili Cheng Changjiu Chen Jingjing Kang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2012年第12期1157-1162,共6页
Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electr... Mg-Zn-Y alloys with long-period stacking ordered structures were prepared by an ingot casting method. The corrosion performance of Mg-Zn-Y alloys was studied by combining gas-collecting test, immersion test and electrochemical measurements in order to determine the corrosion rate and mechanism of the alloys. The results showed that the volume fraction of Mg(12)YZn phase increased and the shape of the Mg(12)YZn phase changed from discontinuous to continuous net-like with increasing Zn and Y content. The corrosion rate of the alloys greatly depended on the distribution and volume fraction of the Mg(12)YZn phase. Corrosion products appeared at the junction of Mg phase and Mg(12)YZn phase, indicating that the Mg(12)YZn phase accelerated galvanic corrosion of Mg matrix. Mg(97)Zn1Y2 alloy shows the lowest corrosion rate due to the continuous distribution of Mg(12)YZn phase. 展开更多
关键词 Mg-Zn-Y alloy Long-period stacking ordered lpso structure Micro-galvanic corrosion Mg(12)YZn phase Corrosion behavior
原文传递
Formation of β' phase in LPSO structures in an Mg88Co5Y7 alloy 被引量:2
12
作者 Q.Q.Jin X.H.Shao +3 位作者 Y.T.Zhou B.Zhang S.J.Zheng X.L.Ma 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期175-182,共8页
Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-fiel... Formation of β’ phase in long-period stacking ordered(LPSO) structures in an Mg;Co;Y;(at.%) alloy after aging at 200 °C for 24 h or electron beam(EB) irradiation has been studied by high-angle annular dark-field scanning transmission electron microscopy(HAADFSTEM). β’ phase was precipitated only in the Mg matrix but not in LPSO structures after aging at 200 °C for 24 h. LPSO structure containing stacking defects transforms into the β’-long phase during EB irradiation, which plays a key role in accelerating solute atoms’ diffusion. New complex β’(LPSO) structures formed in the alloy after EB irradiation, such as β’(12 H) structure with an orthorhombic lattice(Mg;Y, Cmcm,a = 2 _(a0)= 0.642 nm, b=4√3_(a0), c = 6 _(c0)= 3.12 nm). 展开更多
关键词 Magnesium alloys Long-period stacking ordered(lpso)structure HAADF-STEM β’phase
在线阅读 下载PDF
Refining 18R-LPSO phase into sub-micron range by pre-kinking design and its prominent strengthening effect on Mg_(97)Y_(2)Zn_(1) alloy 被引量:6
13
作者 Chao Sun Huan Liu +7 位作者 Ziyue Xu Yuna Wu Kai Yan Jia Ju Jinghua Jiang Feng Xue Jing Bai Yunchang Xin 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第9期13-24,共12页
In this study,a composite deformation strategy of pre-kinking(equal channel angular pressing(ECAP))followed by large-ratio hot extrusion(HE)was designed to refine the 18R long period stacking ordered(LPSO)phase into s... In this study,a composite deformation strategy of pre-kinking(equal channel angular pressing(ECAP))followed by large-ratio hot extrusion(HE)was designed to refine the 18R long period stacking ordered(LPSO)phase into sub-micron range in a Mg_(97)Y_(2)Zn_(1)(at.%)alloy.After the composite processing,the mechanical properties of the alloy are significantly enhanced,superior to the majority of reported Mg_(97)Y_(2)Zn_(1) and other LPSO-containing Mg alloys.Among the composite deformed alloys,the 16P-HE alloy exhibits the best mechanical properties with tensile yield strength(TYS)of 475 MPa,ultimate tensile strength(UTS)of 526 MPa,and fracture elongation(FE)of 14.5%.Quantitative analysis of 18R phase indicates that increasing ECAP pass from 1 to 16 gradually decreases the average size of 18R phase from 5.1μm to 2.3μm.After HE,the 18R phase is further refined with a corresponding decrease in the average size in the descending order of 1P-HE(4.3μm),4P-HE(3.2μm),and 16P-HE(1.4μm)alloys.Calculation of the strengthening contributions confirms that the superior mechanical properties of 16P-HE alloy are mainly due to its strongest interface strengthening(145 MPa)and grain boundary strengthening(189 MPa)from the sub-micron 18R phase andα-Mg grains.Moreover,the strengthening effect of 18R phase decreases gradually with their morphology changing from particles to fibers,and to blocks.The obtained results further deepen and broaden the strengthening-toughening theory of 18R phase. 展开更多
关键词 Magnesium alloys Long period stacking ordered structure Plastic deformation Refinement Mechanical property
原文传递
Nanomechanics of Mg-Gd-Y-Nd-Zn alloy with LPSO and MgRE phases 被引量:3
14
作者 H.Vafaeenezhad S.Aliakbari-Sani +2 位作者 A.Kalaki G.R.Ebrahimi J.Hirsch 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3370-3393,共24页
The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavi... The mechanical properties of two main precipitating phases(LPSO and MgRE)and matrix in Mg-Gd-Y-Nd-Zn bioalloy were examined using nanoindentation method.A new is suggested for characterizing the elastic-plastic behavior,fracture toughness and strain rate sensitivity(SRS)of materials within micro/nanoscale.Firstly,a nanomechanical model was developed for extracting hardness(H),young’s modulus(E)and yield stress(σY)from the characteristic load points which were subsequently analyzed by atomic force microscope(AFM)images.The elasticity data and AFM data were then utilized for determination of plastic deformation in constituent phases.The displacement of the indentation gets the highest value for Mg matrix and between precipitates,depth is more in LPSO rather than that of MgRE.The serrated flow or the behavior of shear bands may originate from the side effect of the interface region in Mg alloys with precipitates.It can be deduced that the KIC produced by both L method and energy-based calculation are both reliable for KIC approximation.The maximum load in simulation withμ=0.2 friction is marginally lesser than that of the frictionless(μ=0)one while elastic recovery of indentation withμ=0.2 is higher to some extent. 展开更多
关键词 Long period stacking ordered(lpso)phase NANOINDENTATION Elastic-plastic behavior Finite element method(FEM) Fracture toughness Strain rate sensitivity(SRS)
在线阅读 下载PDF
Advances in Liquid Crystal Epoxy:Molecular Structures,Thermal Conductivity,and Promising Applications in Thermal Management 被引量:2
15
作者 Wenying Zhou Yun Wang +6 位作者 Fanrong Kong Weiwei Peng Yandong Wang Mengxue Yuan Xiaopeng Han Xiangrong Liu Bo Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期315-343,共29页
Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of ... Traditional heat conductive epoxy composites often fall short in meeting the escalating heat dissipation demands of large-power,high-frequency,and highvoltage insulating packaging applications,due to the challenge of achieving high thermal conductivity(k),desirable dielectric performance,and robust thermomechanical properties simultaneously.Liquid crystal epoxy(LCE)emerges as a unique epoxy,exhibiting inherently high k achieved through the self-assembly of mesogenic units into ordered structures.This characteristic enables liquid crystal epoxy to retain all the beneficial physical properties of pristine epoxy,while demonstrating a prominently enhanced k.As such,liquid crystal epoxy materials represent a promising solution for thermal management,with potential to tackle the critical issues and technical bottlenecks impeding the increasing miniaturization of microelectronic devices and electrical equipment.This article provides a comprehensive review on recent advances in liquid crystal epoxy,emphasizing the correlation between liquid crystal epoxy’s microscopic arrangement,organized mesoscopic domain,k,and relevant physical properties.The impacts of LC units and curing agents on the development of ordered structure are discussed,alongside the consequent effects on the k,dielectric,thermal,and other properties.External processing factors such as temperature and pressure and their influence on the formation and organization of structured domains are also evaluated.Finally,potential applications that could benefit from the emergence of liquid crystal epoxy are reviewed. 展开更多
关键词 intrinsically thermal conductive epoxy liquid crystal unit ordered structure phonon transport thermal conductivity
在线阅读 下载PDF
Stable immobilization of lithium polysulfides using three-dimensional ordered mesoporous Mn_(2)O_(3) as the host material in lithium-sulfur batteries 被引量:1
16
作者 Sung Joon Park Yun Jeong Choi +6 位作者 Hyun-seung Kim Min Joo Hong Hongjun Chang Janghyuk Moon Young-Jun Kim Junyoung Mun Ki Jae Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第6期99-112,共14页
Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the c... Lithium-sulfur batteries(LSBs)have drawn significant attention owing to their high theoretical discharge capacity and energy density.However,the dissolution of long-chain polysulfides into the electrolyte during the charge and discharge process(“shuttle effect”)results in fast capacity fading and inferior electrochemical performance.In this study,Mn_(2)O_(3)with an ordered mesoporous structure(OM-Mn_(2)O_(3))was designed as a cathode host for LSBs via KIT-6 hard templating,to effectively inhibit the polysulfide shuttle effect.OM-Mn_(2)O_(3)offers numerous pores to confine sulfur and tightly anchor the dissolved polysulfides through the combined effects of strong polar-polar interactions,polysulfides,and sulfur chain catenation.The OM-Mn_(2)O_(3)/S composite electrode delivered a discharge capacity of 561 mAh g^(-1) after 250 cycles at 0.5 C owing to the excellent performance of OM-Mn_(2)O_(3).Furthermore,it retained a discharge capacity of 628mA h g^(-1) even at a rate of 2 C,which was significantly higher than that of a pristine sulfur electrode(206mA h g^(-1)).These findings provide a prospective strategy for designing cathode materials for high-performance LSBs. 展开更多
关键词 host material lithium-sulfur battery ordered mesoporous structure shuttle effect transition-metal oxides
在线阅读 下载PDF
Comprehensive impact of as-cast microstructure and ordered structures on formability of large-scale Fe-6.5 wt.%Si alloy ingots
17
作者 Xiang-ju Shi Yong-feng Liang +4 位作者 Shi-bo Wen Zhi-yi Ding Bao Zhang Wei Song Feng Ye 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2020年第2期180-187,共8页
Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of t... Large-scale Fe-6.5 wt.%Si ingot with excellent formability is required for a pilot line producing sheets through hot/cold rolling.The variation of the as-cast microstructure,ordered structures and the formability of the Fe-6.5 wt.%Si alloy ingots with the cooling rate during casting was investigated.Under air-cooling condition,inhomogeneous microstructures with a low proportion of equiaxed grains were formed,but the formation of ordered structures was partially inhibited,especially DO3.Homogeneous microstructures with a high proportion of equiaxed grains were observed under the condition of furnace cooling,but the ordered structures were fully generated,and the degree of order is high.It is generally believed that high degree of order is the main factor of brittleness,but the homogeneous microstructure(including grain morphology and size)of the furnace-cooled sample helps to improve the formability.The influence of these two aspects on formability is contradictory.Therefore,the formability is tested through the flow stress during the compression and the microstructure after the compression.The results show that the furnace-cooled sample has better formability.For large-scale ingots,the control of as-cast microstructure becomes more significant than the control of degree of order.Slow cooling during casting is important for the large-scale ingots to have good formability meeting the requirements of direct hot rolling. 展开更多
关键词 LARGE-SCALE ingot Fe-6.5 wt.%Si alloy Cooling method FORMABILITY ordered structure As-cast microstructure
原文传递
Ultrafine ordered L1_(2)-Pt-Co-Mn ternary intermetallic nanoparticles as high-performance oxygen-reduction electrocatalysts for practical fuel cells 被引量:1
18
作者 Enping Wang Liuxuan Luo +12 位作者 Yong Feng Aiming Wu Huiyuan Li Xiashuang Luo Yangge Guo Zehao Tan Fengjuan Zhu Xiaohui Yan Qi Kang Zechao Zhuang Daihui Yang Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期157-165,I0005,共10页
The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction... The long-range periodically ordered atomic structures in intermetallic nanoparticles(INPs)can significantly enhance both the electrocatalytic activity and electrochemical stability toward the oxygen reduction reaction(ORR)compared to the disordered atomic structures in ordinary solid-solution alloy NPs.Accordingly,through a facile and scalable synthetic method,a series of carbon-supported ultrafine Pt_3Co_(x)Mn_(1-x)ternary INPs are prepared in this work,which possess the"skin-like"ultrathin Pt shells,the ordered L1_(2) atomic structure,and the high-even dispersion on supports(L1_(2)-Pt_3Co_(x)Mn_(1-x)/~SPt INPs/C).Electrochemical results present that the composition-optimized L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C exhibits the highest electrocata lytic activity among the series,which are also much better than those of the pristine ultrafine Pt/C.Besides,it also has a greatly enhanced electrochemical stability.In addition,the effects of annealing temperature and time are further investigated.More importantly,such superior ORR electrocatalytic performance of L1_(2)-Pt_3Co_(0.7)Mn_(0.3)/~SPt INPs/C are also well demonstrated in practical fuel cells.Physicochemical characterization analyses further reveal the major origins of the greatly enhanced ORR electrocata lytic performance:the Pt-Co-Mn alloy-induced geometric and ligand effects as well as the extremely high L1_(2) atomic-ordering degree.This work not only successfully develops a highly active and stable ordered ternary intermetallic ORR electrocatalyst,but also elucidates the corresponding"structure-function"relationship,which can be further applied in designing other intermetallic(electro)catalysts. 展开更多
关键词 Platinum Cobalt Manganese Oxygen reduction reaction ordered intermetallic L1_(2)atomic structure Proton-exchange membrane fuel cell
在线阅读 下载PDF
Influence of Local Cation Order on Electronic Structure and Optical Properties of Cation-Disordered Semiconductor AgBiS_(2)
19
作者 Xiaoyu Wang Muhammad Faizan +5 位作者 Yuhao Fu Kun Zhou Yilin Zhang Xin He David J.Singh Lijun Zhang 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第10期61-69,共9页
Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for ex... Site disorder exists in some practical semiconductors and can significantly impact their intrinsic properties both beneficially and detrimentally.However,the uncertain local order and structure pose a challenge for experimental and theoretical research.Especially,it hinders the investigation of the effects of the diverse local atomic environments resulting from the site disorder.We employ the special quasi-random structure method to perform first-principles research on connection between local site disorder and electronic/optical properties,using cationdisordered AgBiS_(2)(rock salt phase)as an example.We predict that cation-disordered AgBiS_(2)has a bandgap ranging from 0.6 to 0.8 eV without spin-orbit coupling and that spin-orbit coupling reduces this by approximately 0.3 eV.We observe the effects of local structural features in the disordered lattice,such as the one-dimensional chain-like aggregation of cations that results in formation of doping energy bands near the band edges,formation and broadening of band-tail states,and the disturbance in the local electrostatic potential,which significantly reduces the bandgap and stability.The influence of these ordered features on the optical properties is confined to alterations in the bandgap and does not markedly affect the joint density of states or optical absorption.Our study provides a research roadmap for exploring the electronic structure of site-disordered semiconductor materials,suggests that the ordered chain-like aggregation of cations is an effective way to regulate the bandgap of AgBiS_(2),and provides insight into how variations in local order associated with processing can affect properties. 展开更多
关键词 stability structure ordered
原文传递
High-Temperature Stability of Mg-1Al-12Y Alloy Containing LPSO Phase and Mechanism of Its Portevin-Le Chatelier(PLC)Effect
20
作者 Qian-Long Ren Shuai Yuan +3 位作者 Shi-Yu Luan Jin-Hui Wang Xiao-Wei Li Xiao-Yu Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第6期982-998,共17页
In this study,the high-temperature stability and the generation mechanism of the Portevin-Le Chatelier(PLC)effect in solid-solution Mg-1Al-12Y alloy with different heat treatment processes were investigated by adjusti... In this study,the high-temperature stability and the generation mechanism of the Portevin-Le Chatelier(PLC)effect in solid-solution Mg-1Al-12Y alloy with different heat treatment processes were investigated by adjusting the content of long-period stacking ordered(LPSO)phases.It was found that the content of LPSO phases in the alloys differed the most after heat treatment at 530℃for 16 h and 24 h,with values of 13.56%and 3.93%respectively.Subsequently,high-temperature tensile experiments were conducted on these two alloys at temperatures of 150℃,200℃,250℃,and 300℃.The results showed that both alloys exhibited the PLC effect at temperatures ranging from 150 to 250℃.However,at a temperature 300℃,only the alloy with a greater concentration of LPSO phases exhibited the PLC effect,whereas the alloy with a lower proportion of LPSO phases did not exhibit this phenomenon.Additionally,both alloys exhibited remarkable high-temperature stability,with the alloy containing a greater percentage of LPSO phases also demonstrating superior strength.The underlying mechanism for this phenomenon lies in the exceptional high-temperature stability exhibited by the second phase within the alloy.Furthermore,the LPSO phase effectively obstructs the movement of dislocations,and it also undergoing kinking to facilitate plastic deformation of the alloy.The results indicate that the PLC effect can be suppressed by reducing dislocation pile-up at grain boundaries,which leads to a decrease in alloy plasticity but an increase in strength.The presence of the PLC effect in the WA121 alloy is attributed to the abundant dispersed second phase within the alloy,which initially hinders the movement of dislocations,leading to an increase in stress,and subsequently releases the dislocations,allowing them to continue their movement and thereby reducing in stress. 展开更多
关键词 Magnesium alloy Long-period stacking ordered(lpso)phase Portevin-Le Chatelier effect High temperature
原文传递
上一页 1 2 138 下一页 到第
使用帮助 返回顶部