The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is n...The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.展开更多
The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilizat...The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilization,and nitrogen-filled packaging technologies can only improve production efficiency and reduce the generation of by-products,but also significantly extend the shelf life of drugs.In the future,process automation and intelligent technology will further optimize the large-scale production process,and the combination of nanotechnology and precision drug delivery will promote the improvement of effect in clinical applications.展开更多
As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A s...As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules.展开更多
[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key ...[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.展开更多
Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process...Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established.展开更多
Exploring optimal operational schemes for synergistic development is crucial for sustainable management in river basins.This study introduces a multi-objective synergistic optimization framework aimed at analyzing the...Exploring optimal operational schemes for synergistic development is crucial for sustainable management in river basins.This study introduces a multi-objective synergistic optimization framework aimed at analyzing the interplay among flood control,ecological integrity,and desilting objectives under varying watersediment conditions.The framework encompasses multi-objective reservoir optimal operation,scheme decision,and trade-off analysis among competing objectives.To address the optimization model,an elite mutation-based multiobjective particle swarm optimization(MOPSO)algorithm that integrates genetic algorithms(GA)is developed.The coupling coordination degree is employed for optimal scheme decision-making,allowing for the adjustment of weight ratios to investigate the trade-offs between objectives.This research focuses on the Sanmenxia and Xiaolangdi cascade reservoirs in the Yellow River,utilizing three representative hydrological years:1967,1969,and 2002.The findings reveal that:(1)the proposed model effectively generates Pareto fronts for multi-objective operations,facilitating the recommendation of optimal schemes based on coupling coordination degrees;(2)as water-sediment conditions shift from flooding to drought,competition intensifies between the flood control and desilting objectives.While flood control and ecological objectives compete during flood and dry years,they demonstrate synergies in normal years(r=0.22);conversely,ecological and desilting objectives are consistently competitive across all three typical years,with the strongest competition observed in the normal year(r=-0.95);(3)the advantages conferred to ecological objectives increase as water-sediment conditions shift from flooding to drought.However,the promotion of the desilting objective requires more complex trade-offs.This study provides a model and methodological approach for the multi-objective optimization of flood control,sediment management,and ecological considerations in reservoir clusters.Moreover,the methodologies presented herein can be extended to other water resource systems for multi-objective optimization and decision-making.展开更多
In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RS...In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RSM)was employed to quantify the effects of independent variables,including flocculant dosage,defoamer dosage,and muck drying mass(MDM)and their interactions on defoaming-flocculation-dewatering indices.The polymeric aluminum chloride(PACL)and hydroxy silicone oil-glycerol polypropylene ether(H-G)were selected as the flocculant and defoamer.The contents of surfactants and foam stabilizers in residual foaming agents were determined using the proposed empirical equation.The defoaming ratio,antifoaming ratio,turbidity,moisture content,filtration loss ratio,and fall cone penetration depth were considered as dependent variables.The accuracy of developed RSM models was verified by the analysis results of variance,residuals,and paired t-test.Combined with the desirability approach,an optimal mixing ratio of 0.078 wt%PACL,0.016 wt%H-G,and 27.882 wt%MDM was recommended,leading to a defoaming ratio of 98.34 vol%for residual foams and a moisture content of 56.72 wt%for pressure-filtration cakes.Our findings were demonstrated to be able to provide useful guidance for prediction and optimization of the in situ recycling indicators of EPB shield waste muck in metro tunnel construction sites.展开更多
Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon ...Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.展开更多
A systematic analysis is performed to assess the current situation of transportation and tourism integration in 20 districts and counties located along National Highway 310(Gansu-Qinghai section),and optimization stra...A systematic analysis is performed to assess the current situation of transportation and tourism integration in 20 districts and counties located along National Highway 310(Gansu-Qinghai section),and optimization strategies are explored based on the findings of this analysis.The findings indicate a pressing necessity for further improvement in the practice of transportation and tourism integration in both Gansu and Qinghai provinces.Based on this foundation,a development framework for transportation and tourism integration has been established.This framework simulates a“fast-forward-slow-travel”system in which tourists commence their journey from the origin,traverse through core,secondary,and subsidiary tourist destinations,and ultimately reach the core,secondary,and subsidiary attractions.Furthermore,this study presents optimization recommendations for the integrated development of regional transportation and tourism along the designated route.These suggestions encompass the establishment and optimization of facilities and service points,the planning and design of tourism routes,the promotion of regional synergistic development,the construction of intelligent tourism,and the implementation of green tourism pathways.展开更多
This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration s...This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.展开更多
Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainabili...Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.展开更多
Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley a...Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.展开更多
The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production ...The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.展开更多
文摘The uncertain nature of mapping user tasks to Virtual Machines(VMs) causes system failure or execution delay in Cloud Computing.To maximize cloud resource throughput and decrease user response time,load balancing is needed.Possible load balancing is needed to overcome user task execution delay and system failure.Most swarm intelligent dynamic load balancing solutions that used hybrid metaheuristic algorithms failed to balance exploitation and exploration.Most load balancing methods were insufficient to handle the growing uncertainty in job distribution to VMs.Thus,the Hybrid Spotted Hyena and Whale Optimization Algorithm-based Dynamic Load Balancing Mechanism(HSHWOA) partitions traffic among numerous VMs or servers to guarantee user chores are completed quickly.This load balancing approach improved performance by considering average network latency,dependability,and throughput.This hybridization of SHOA and WOA aims to improve the trade-off between exploration and exploitation,assign jobs to VMs with more solution diversity,and prevent the solution from reaching a local optimality.Pysim-based experimental verification and testing for the proposed HSHWOA showed a 12.38% improvement in minimized makespan,16.21% increase in mean throughput,and 14.84% increase in network stability compared to baseline load balancing strategies like Fractional Improved Whale Social Optimization Based VM Migration Strategy FIWSOA,HDWOA,and Binary Bird Swap.
基金Supported by the Funds from Central Government for Guiding Local Science and Technology Development(ZY20230102)Planning Project of Scientific Research and Technology Development in Guilin(20220104-4,20210202-1)Science and Technology Planing Project of Guangxi(Guike AB24010263).
文摘The latest progress in the process optimization and stability improvement of third-generation cephalosporins in recent years was reviewed.The introduction of green chemistry,enzyme catalysis,nanotechnology,lyophilization,and nitrogen-filled packaging technologies can only improve production efficiency and reduce the generation of by-products,but also significantly extend the shelf life of drugs.In the future,process automation and intelligent technology will further optimize the large-scale production process,and the combination of nanotechnology and precision drug delivery will promote the improvement of effect in clinical applications.
基金supported by Tianjin Science and Technology Planning Project(22YDTPJC0020).
文摘As a core power device in strategic industries such as new energy power generation and electric vehicles,the thermal reliability of IGBT modules directly determines the performance and lifetime of the whole system.A synergistic optimization structure of“inlet plate-channel spoiler columns”is proposed for the local hot spot problem during the operation of Insulated Gate Bipolar Transistor(IGBT),combined with the inherent defect of uneven flow distribution of the traditional U-type liquid cooling plate in this paper.The influences of the shape,height(H),and spacing from the spoiler column(b)of the plate on the comprehensive heat dissipation performance of the liquid cooling plate are analyzed at different Reynolds numbers,A dual heat source strategy is introduced and the effect of the optimized structure is evaluated by the temperature inhomogeneity coefficient(Φ).The results show that the optimum effect is achieved when the shape of the plate is square,H=4.5 mm,b=2 mm,and u=0.05 m/s,at which the HTPE=1.09 and Φ are reduced by 40%.In contrast,the maximum temperatures of the IGBT and the FWD(Free Wheeling Diode)chips are reduced by 8.7 and 8.4 K,respectively,and ΔP rises by only 1.58 Pa while keeping ΔT not significantly increased.This optimized configuration achieves a significant reduction in the critical chip temperature and optimization of the flow field uniformity with almost no change in the system flow resistance.It breaks through the limitation of single structure optimization of the traditional liquid cooling plate and effectively solves the problem of uneven flow in the U-shaped cooling plate,which provides a new solution with important engineering value for the thermal management of IGBT modules.
基金Supported by Central Guided Local Science and Technology Development Funds(ZY20230102)Guilin Scientific Research and Technology Development Programme Project(2023010301-1,20220104-4)+1 种基金Guangxi Science and Technology Programme Project(GK AB24010263)Guangxi Innovation Driving Development Special Funds Project(GK AA22096020).
文摘[Objectives] To optimize the crystallization process of ceftriaxone sodium using response surface methodology (RSM) for enhancing both the crystallization rate and the quality of the final product. [Methods] Four key factors, including crystallization temperature, stirring speed, solvent drop rate, and seed crystal content, were employed as independent variables, while the crystallization rate served as the response variable. The Box-Behnken response surface method was utilized for the optimization design. [Results] The optimal parameters for the crystallization process, determined through optimization, were as follows: a temperature of 10.6 ℃, a stirring rate of 150 rpm, a solvent drop rate of 1.50 mL/min, and a seed crystal content of 0.12 g. Validation tests conducted under these conditions yielded an average crystallization rate of 94.38% for the refined product. [Conclusions] The crystallization efficiency of ceftriaxone sodium is markedly enhanced, thereby offering substantial support for its industrial production and clinical application.
基金the financial supports provided by the National Key Research and Development Program of China(2023YFE0201500)the National Natural Science Foundation of China(52375315)+2 种基金the Key Talent Plan Project of Guangdong Province(2023TQ07C702)the Research and Development Program in Key Areas of Dongguan(20201200300122)the GDAS’Project of Science and Technology Development(2022GDASZH-2022010203).
文摘Refill friction stir spot welding process is difficultly optimized by accurate modeling because of the high-order functional relationship between welding parameters and joint strength.A database of the welding process was first established with 6061-T6 aluminum alloy and DP780 galvanized steel as base materials.This dataset was then optimized using a backpropagation neural network.Analyses and mining of the experimental data confirmed the multidimensional mapping relationship between welding parameters and joint strength.Subsequently,intelligent optimization of the welding process and prediction of joint strength were achieved.At the predicted welding parameter(plunging rotation speedω1=1733 r/min,refilling rotation speedω_(2)=1266 r/min,plunging depth p=1.9 mm,and welding speed v=0.5 mm/s),the tensile shear fracture load of the joint reached a maximum value of 10,172 N,while the experimental result was 9980 N,with an error of 1.92%.Furthermore,the correlation of welding parameters-microstructure-joint strength was established.
基金National Natural Science Foundation of China,Grant/Award Number:U2243228The Belt and Road Special Foundation of the National Key Laboratory of Water Disaster Prevention,Grant/Award Number:2022nkms04+1 种基金MOE(Ministry of Education in China)Liberal Arts and Social Sciences Foundation,Grant/Award Number:23YJCZH332Natural Science Foundation of Anhui Province,Grant/Award Numbers:2208085US03,2308085US13。
文摘Exploring optimal operational schemes for synergistic development is crucial for sustainable management in river basins.This study introduces a multi-objective synergistic optimization framework aimed at analyzing the interplay among flood control,ecological integrity,and desilting objectives under varying watersediment conditions.The framework encompasses multi-objective reservoir optimal operation,scheme decision,and trade-off analysis among competing objectives.To address the optimization model,an elite mutation-based multiobjective particle swarm optimization(MOPSO)algorithm that integrates genetic algorithms(GA)is developed.The coupling coordination degree is employed for optimal scheme decision-making,allowing for the adjustment of weight ratios to investigate the trade-offs between objectives.This research focuses on the Sanmenxia and Xiaolangdi cascade reservoirs in the Yellow River,utilizing three representative hydrological years:1967,1969,and 2002.The findings reveal that:(1)the proposed model effectively generates Pareto fronts for multi-objective operations,facilitating the recommendation of optimal schemes based on coupling coordination degrees;(2)as water-sediment conditions shift from flooding to drought,competition intensifies between the flood control and desilting objectives.While flood control and ecological objectives compete during flood and dry years,they demonstrate synergies in normal years(r=0.22);conversely,ecological and desilting objectives are consistently competitive across all three typical years,with the strongest competition observed in the normal year(r=-0.95);(3)the advantages conferred to ecological objectives increase as water-sediment conditions shift from flooding to drought.However,the promotion of the desilting objective requires more complex trade-offs.This study provides a model and methodological approach for the multi-objective optimization of flood control,sediment management,and ecological considerations in reservoir clusters.Moreover,the methodologies presented herein can be extended to other water resource systems for multi-objective optimization and decision-making.
基金supported by the National Youth Top-notch Talent Support Program of China(Grant No.00389335)the National Natural Science Foundation of China(Grant No.52378392)the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province(Grant No.00387088).
文摘In situ recycling is one of the most effective methods to dispose of earth pressure balance(EPB)shield waste muck with residual foaming agents with high moisture content.In this context,response surface methodology(RSM)was employed to quantify the effects of independent variables,including flocculant dosage,defoamer dosage,and muck drying mass(MDM)and their interactions on defoaming-flocculation-dewatering indices.The polymeric aluminum chloride(PACL)and hydroxy silicone oil-glycerol polypropylene ether(H-G)were selected as the flocculant and defoamer.The contents of surfactants and foam stabilizers in residual foaming agents were determined using the proposed empirical equation.The defoaming ratio,antifoaming ratio,turbidity,moisture content,filtration loss ratio,and fall cone penetration depth were considered as dependent variables.The accuracy of developed RSM models was verified by the analysis results of variance,residuals,and paired t-test.Combined with the desirability approach,an optimal mixing ratio of 0.078 wt%PACL,0.016 wt%H-G,and 27.882 wt%MDM was recommended,leading to a defoaming ratio of 98.34 vol%for residual foams and a moisture content of 56.72 wt%for pressure-filtration cakes.Our findings were demonstrated to be able to provide useful guidance for prediction and optimization of the in situ recycling indicators of EPB shield waste muck in metro tunnel construction sites.
基金supported by the Science and Technology Project of Yunnan Power Grid Co.,Ltd.under Grant No.YNKJXM20222410.
文摘Traditional demand response(DR)programs for energy-intensive industries(EIIs)primarily rely on electricity price signals and often overlook carbon emission factors,limiting their effectiveness in supporting lowcarbon transitions.To address this challenge,this paper proposes an electricity–carbon integratedDR strategy based on a bi-level collaborative optimization framework that coordinates the interaction between the grid and EIIs.At the upper level,the grid operatorminimizes generation and curtailment costs by optimizing unit commitment while determining real-time electricity prices and dynamic carbon emission factors.At the lower level,EIIs respond to these dual signals by minimizing their combined electricity and carbon trading costs,considering their participation in medium-and long-term electricity markets,day-ahead spot markets,and carbon emissions trading schemes.The model accounts for direct and indirect carbon emissions,distributed photovoltaic(PV)generation,and battery energy storage systems.This interaction is structured as a Stackelberg game,where the grid acts as the leader and EIIs as followers,enabling dynamic feedback between pricing signals and load response.Simulation studies on an improved IEEE 30-bus system,with a cement plant as a representative user form EIIs,show that the proposed strategy reduces user-side carbon emissions by 7.95% and grid-side generation cost by 4.66%,though the user’s energy cost increases by 7.80% due to carbon trading.Theresults confirmthat the joint guidance of electricity and carbon prices effectively reshapes user load profiles,encourages peak shaving,and improves PV utilization.This coordinated approach not only achieves emission reduction and cost efficiency but also offers a theoretical and practical foundation for integrating carbon pricing into demand-side energy management in future low-carbon power systems.
文摘A systematic analysis is performed to assess the current situation of transportation and tourism integration in 20 districts and counties located along National Highway 310(Gansu-Qinghai section),and optimization strategies are explored based on the findings of this analysis.The findings indicate a pressing necessity for further improvement in the practice of transportation and tourism integration in both Gansu and Qinghai provinces.Based on this foundation,a development framework for transportation and tourism integration has been established.This framework simulates a“fast-forward-slow-travel”system in which tourists commence their journey from the origin,traverse through core,secondary,and subsidiary tourist destinations,and ultimately reach the core,secondary,and subsidiary attractions.Furthermore,this study presents optimization recommendations for the integrated development of regional transportation and tourism along the designated route.These suggestions encompass the establishment and optimization of facilities and service points,the planning and design of tourism routes,the promotion of regional synergistic development,the construction of intelligent tourism,and the implementation of green tourism pathways.
基金funded by the National Natural Science Foundation of China(12102487)Basic and Applied Basic Research Foundation of Guangdong Province,China(2023A1515012339)+1 种基金Shenzhen Science and Technology Program(ZDSYS20210623091808026)the Discovery Grant(RGPIN-2024-06290)of the Natural Sciences and Engineering Research Council of Canada。
文摘This paper proposed a new libration decoupling analytical speed function(LD-ASF)in lieu of the classic analytical speed function to control the climber's speed along a partial space elevator to improve libration stability in cargo transportation.The LD-ASF is further optimized for payload transportation efficiency by a novel coordinate game theory to balance competing control objectives among payload transport speed,stable end body's libration,and overall control input via model predictive control.The transfer period is divided into several sections to reduce computational burden.The validity and efficacy of the proposed LD-ASF and coordinate game-based model predictive control are demonstrated by computer simulation.Numerical results reveal that the optimized LD-ASF results in higher transportation speed,stable end body's libration,lower thrust fuel consumption,and more flexible optimization space than the classic analytical speed function.
基金supported by National Key Research and Development Program(2024YFE0115600).
文摘Addressing climate change and facilitating the large-scale integration of renewable energy sources(RESs)have driven the development of hydrogen-coupled integrated energy systems(HIES),which enhance energy sustainability through coordinated electricity,thermal,natural gas,and hydrogen utilization.This study proposes a two-stage distributionally robust optimization(DRO)-based scheduling method to improve the economic efficiency and reduce carbon emissions of HIES.The framework incorporates a ladder-type carbon trading mechanism to regulate emissions and implements a demand response(DR)program to adjustflexible multi-energy loads,thereby prioritizing RES consumption.Uncertainties from RES generation and load demand are addressed through an ambiguity set,enabling robust decision-making.The column-and-constraint generation(C&CG)algorithm efficiently solves the two-stage DRO model.Case studies demonstrate that the proposed method reduces operational costs by 3.56%,increases photovoltaic consumption rates by 5.44%,and significantly lowers carbon emissions compared to conventional approaches.Furthermore,the DRO framework achieves a superior balance between conservativeness and robustness over conventional stochastic and robust optimization methods,highlighting its potential to advance cost-effective,low-carbon energy systems while ensuring grid stability under uncertainty.
基金supported by the General Program of the National Natural Science Foundation of China(No.52274326)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202109)the Seventh Batch of Ten Thousand Talents Plan of China(No.ZX20220553).
文摘Sinter is the core raw material for blast furnaces.Flue pressure,which is an important state parameter,affects sinter quality.In this paper,flue pressure prediction and optimization were studied based on the shapley additive explanation(SHAP)to predict the flue pressure and take targeted adjustment measures.First,the sintering process data were collected and processed.A flue pressure prediction model was then constructed after comparing different feature selection methods and model algorithms using SHAP+extremely random-ized trees(ET).The prediction accuracy of the model within the error range of±0.25 kPa was 92.63%.SHAP analysis was employed to improve the interpretability of the prediction model.The effects of various sintering operation parameters on flue pressure,the relation-ship between the numerical range of key operation parameters and flue pressure,the effect of operation parameter combinations on flue pressure,and the prediction process of the flue pressure prediction model on a single sample were analyzed.A flue pressure optimization module was also constructed and analyzed when the prediction satisfied the judgment conditions.The operating parameter combination was then pushed.The flue pressure was increased by 5.87%during the verification process,achieving a good optimization effect.
文摘The increase in oil prices and greenhouse gas emissions has led to the search for substitutes for fossil fuels. In Cameroon, the abundance of lignocellulosic resources is inherent to agricultural activity. Production of bioethanol remains a challenge given the crystallinity of cellulose and the presence of the complex. The pretreatment aimed to solubilize the lignin fraction and to make cellulose more accessible to the hydrolytic enzymes, was done using the organosolv process. A mathematical modeling was performed to point out the effect of the temperature on the kinetics of the release of the reducing sugars during the pretreatment. Two mathematical model was used, SAEMAN’s model and Response surface methodology. The first show that the kinetic parameters of the hydrolysis of the cellulose and reducing sugar are: 0.05089 min<sup>-1</sup>, 5358.1461 J·mol<sup>-1</sup>, 1383.03691 min<sup>-1</sup>, 51577.6100 J·mol<sup>-1</sup> respectively. The second model was used. Temperature is the factor having the most positive influence whereas, ethanol concentration is not an essential factor. To release the maximum, an organosolv pre-treatment of this sub-strate should be carried out at 209.08°C for 47.60 min with an ethanol-water ratio of 24.02%. Organosolv pre-treatment is an effective process for delignification of the lignocellulosic structure.