In this article,we conduct a study on mixed quasi-martingale Hardy spaces that are defined by means of the mixed L_(p)-norm.By utilizing Doob’s inequalities,we explore the atomic decomposition and quasi-martingale in...In this article,we conduct a study on mixed quasi-martingale Hardy spaces that are defined by means of the mixed L_(p)-norm.By utilizing Doob’s inequalities,we explore the atomic decomposition and quasi-martingale inequalities of mixed quasi-martingale Hardy spaces.Moreover,we furnish sufficient conditions for the boundedness ofσ-sublinear operators in these spaces.These findings extend the existing conclusions regarding mixed quasi-martingale Hardy spaces defined with the help of the mixed L_(p)-norm.展开更多
Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challeng...Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.展开更多
BACKGROUND Breast cancer is one of the most prevalent malignancies affecting women worldwide,with approximately 2.3 million new cases diagnosed annually.Breast cancer stem cells(BCSCs)play pivotal roles in tumor initi...BACKGROUND Breast cancer is one of the most prevalent malignancies affecting women worldwide,with approximately 2.3 million new cases diagnosed annually.Breast cancer stem cells(BCSCs)play pivotal roles in tumor initiation,progression,metastasis,therapeutic resistance,and disease recurrence.Cancer stem cells possess selfrenewal capacity,multipotent differentiation potential,and enhanced tumorigenic activity,but their molecular characteristics and regulatory mechanisms require further investigation.AIM To comprehensively characterize the molecular features of BCSCs through multiomics approaches,construct a prognostic prediction model based on stem cellrelated genes,reveal cell-cell communication networks within the tumor microenvironment,and provide theoretical foundation for personalized treatment strategies.METHODS Flow cytometry was employed to detect the expression of BCSC surface markers(CD34,CD45,CD29,CD90,CD105).Transcriptomic analysis was performed to identify differentially expressed genes.Least absolute shrinkage and selection operator regression analysis was utilized to screen key prognostic genes and construct a risk scoring model.Single-cell RNA sequencing and spatial transcriptomics were applied to analyze tumor heterogeneity and spatial gene expression patterns.Cell-cell communication network analysis was conducted to reveal interactions between stem cells and the microenvironment.RESULTS Flow cytometric analysis revealed the highest expression of CD105(96.30%),followed by CD90(68.43%)and CD34(62.64%),while CD29 showed lower expression(7.16%)and CD45 exhibited the lowest expression(1.19%).Transcriptomic analysis identified 3837 significantly differentially expressed genes(1478 upregulated and 2359 downregulated).Least absolute shrinkage and selection operator regression analysis selected 10 key prognostic genes,and the constructed risk scoring model effectively distinguished between high-risk and low-risk patient groups(P<0.001).Single-cell analysis revealed tumor cellular heterogeneity,and spatial transcriptomics demonstrated distinct spatial expression gradients of stem cell-related genes.MED18 gene showed significantly higher expression in malignant tissues(P<0.001)and occupied a central position in cell-cell communication networks,exhibiting significant correlations with tumor cells,macrophages,fibroblasts,and endothelial cells.CONCLUSION This study comprehensively characterized the molecular features of BCSCs through multi-omics approaches,identified reliable surface markers and key regulatory genes,and constructed a prognostic prediction model with clinical application value.展开更多
基金Supported by the National Natural Science Foundation of China(11871195)。
文摘In this article,we conduct a study on mixed quasi-martingale Hardy spaces that are defined by means of the mixed L_(p)-norm.By utilizing Doob’s inequalities,we explore the atomic decomposition and quasi-martingale inequalities of mixed quasi-martingale Hardy spaces.Moreover,we furnish sufficient conditions for the boundedness ofσ-sublinear operators in these spaces.These findings extend the existing conclusions regarding mixed quasi-martingale Hardy spaces defined with the help of the mixed L_(p)-norm.
文摘Underwater pipeline inspection plays a vital role in the proactive maintenance and management of critical marine infrastructure and subaquatic systems.However,the inspection of underwater pipelines presents a challenge due to factors such as light scattering,absorption,restricted visibility,and ambient noise.The advancement of deep learning has introduced powerful techniques for processing large amounts of unstructured and imperfect data collected from underwater environments.This study evaluated the efficacy of the You Only Look Once(YOLO)algorithm,a real-time object detection and localization model based on convolutional neural networks,in identifying and classifying various types of pipeline defects in underwater settings.YOLOv8,the latest evolution in the YOLO family,integrates advanced capabilities,such as anchor-free detection,a cross-stage partial network backbone for efficient feature extraction,and a feature pyramid network+path aggregation network neck for robust multi-scale object detection,which make it particularly well-suited for complex underwater environments.Due to the lack of suitable open-access datasets for underwater pipeline defects,a custom dataset was captured using a remotely operated vehicle in a controlled environment.This application has the following assets available for use.Extensive experimentation demonstrated that YOLOv8 X-Large consistently outperformed other models in terms of pipe defect detection and classification and achieved a strong balance between precision and recall in identifying pipeline cracks,rust,corners,defective welds,flanges,tapes,and holes.This research establishes the baseline performance of YOLOv8 for underwater defect detection and showcases its potential to enhance the reliability and efficiency of pipeline inspection tasks in challenging underwater environments.
基金the Natural Science Foundation of Yongchuan District,No.2023yc-jckx20021.
文摘BACKGROUND Breast cancer is one of the most prevalent malignancies affecting women worldwide,with approximately 2.3 million new cases diagnosed annually.Breast cancer stem cells(BCSCs)play pivotal roles in tumor initiation,progression,metastasis,therapeutic resistance,and disease recurrence.Cancer stem cells possess selfrenewal capacity,multipotent differentiation potential,and enhanced tumorigenic activity,but their molecular characteristics and regulatory mechanisms require further investigation.AIM To comprehensively characterize the molecular features of BCSCs through multiomics approaches,construct a prognostic prediction model based on stem cellrelated genes,reveal cell-cell communication networks within the tumor microenvironment,and provide theoretical foundation for personalized treatment strategies.METHODS Flow cytometry was employed to detect the expression of BCSC surface markers(CD34,CD45,CD29,CD90,CD105).Transcriptomic analysis was performed to identify differentially expressed genes.Least absolute shrinkage and selection operator regression analysis was utilized to screen key prognostic genes and construct a risk scoring model.Single-cell RNA sequencing and spatial transcriptomics were applied to analyze tumor heterogeneity and spatial gene expression patterns.Cell-cell communication network analysis was conducted to reveal interactions between stem cells and the microenvironment.RESULTS Flow cytometric analysis revealed the highest expression of CD105(96.30%),followed by CD90(68.43%)and CD34(62.64%),while CD29 showed lower expression(7.16%)and CD45 exhibited the lowest expression(1.19%).Transcriptomic analysis identified 3837 significantly differentially expressed genes(1478 upregulated and 2359 downregulated).Least absolute shrinkage and selection operator regression analysis selected 10 key prognostic genes,and the constructed risk scoring model effectively distinguished between high-risk and low-risk patient groups(P<0.001).Single-cell analysis revealed tumor cellular heterogeneity,and spatial transcriptomics demonstrated distinct spatial expression gradients of stem cell-related genes.MED18 gene showed significantly higher expression in malignant tissues(P<0.001)and occupied a central position in cell-cell communication networks,exhibiting significant correlations with tumor cells,macrophages,fibroblasts,and endothelial cells.CONCLUSION This study comprehensively characterized the molecular features of BCSCs through multi-omics approaches,identified reliable surface markers and key regulatory genes,and constructed a prognostic prediction model with clinical application value.