期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
A two-step transient liquid phase diffusion bonding process of T91 steels 被引量:4
1
作者 Chen Sijie Tang Hengjuan Zhao Pifeng 《China Welding》 EI CAS 2017年第2期52-57,共6页
In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating ... In this study, a two-step heating process is introduced for transient liquid phase ( TLP) diffusion bonding fo r sound joints with T91 heat resistant steels. At first, a short-time higher temperature heating step is addressed to melt the interlayer, followed by the second step to complete isothermal solidification at a low temperature. The most critical feature of our new method is producing a non-planar interface at the T9/ heat resistant steels joint. We propose a transitional liquid phase bonding of T91 heat resistant steels by this approach. Since joint microstructures have been studied, we tested the tensile strength to assess joint mechanical property. The result indicates that the solidified bond may contain a primary solid-solution, similar composition to the parent metal and free from precipitates. Joint tensile strength of the joint is not lower than parent materials. Joint bend's strengths are enhanced due to the higher metal-to-metal junction producing a non-planar bond lines. Nevertheless, the traditional transient liquid phase diffusion bonding produces planar ones. Bonding parameters of new process are 1 260 °C for 0. 5 min and 1 230 °C fo r 4 min. 展开更多
关键词 T91 transient liquid phase diffusion bonding two-step heating process scanning electron microscopy
在线阅读 下载PDF
Optimization of Biodiesel Production from Waste Vegetable Oil Assisted by Co-Solvent and Microwave Using a Two-Step Process
2
作者 Chin-Chiuan Lin Ming-Chien Hsiao 《Journal of Sustainable Bioenergy Systems》 2013年第1期1-6,共6页
The two-step catalyzing process for biodiesel production from waste vegetable oil was assisted by both co-solvent and microwave irradiation. Central composite design (CCD) was employed to optimize the reaction conditi... The two-step catalyzing process for biodiesel production from waste vegetable oil was assisted by both co-solvent and microwave irradiation. Central composite design (CCD) was employed to optimize the reaction conditions. Optimal reaction conditions of the first step were alcohol to oil molar ratio of 9:1, catalyst (H2SO4) amount 1 wt%, reaction temperature 333 K, and reaction time 7.5 minutes;while for the second step, optimal reaction conditions were alcohol to oil molar ratio 12:1, catalyst (NaOH) amount 1 wt%, reaction temperature 333 K, and reaction time 2.0 minutes. The total reaction time was 9.5 min and the conversion rate of fatty acid methyl esters (FAMEs) achieved was 97.4%. The total reaction time was shorter than previous studies. Therefore, the co-solvent and microwave assisted two-step catalyzing process has a potential application in producing biodiesel from waste vegetable oil. 展开更多
关键词 WASTE VEGETABLE OIL CO-SOLVENT MICROWAVE two-step process
在线阅读 下载PDF
Improving the fracture strain of graphite materials by in-situ porosity introduction by two-step sintering
3
作者 GU Shi-jia CHEN Han-lin +3 位作者 WANG Jun-zhuo LU Xiao-fang WANG Lian-jun JIANG Wan 《新型炭材料(中英文)》 北大核心 2025年第3期703-716,共14页
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth... High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials. 展开更多
关键词 High-performance graphite Phase transition control two-step sintering process Fracture strain IN-SITU
在线阅读 下载PDF
Advances in fabrication of ceramic corundum abrasives based on sol–gel process 被引量:17
4
作者 Baoteng HUANG Changhe LI +12 位作者 Yanbin ZHANG Wenfeng DING Min YANG Yuying YANG Han ZHAI Xuefeng XU Dazhong WANG Sujan DEBNATH Muhammad JAMIL Hao Nan Li Hafiz Muhammad ALI Munish Kumar GUPTA Zafar SAID 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第6期1-17,共17页
Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot s... Corundum abrasives with good chemical stability can be fabricated into various free abrasives and bonded abrasive tools that are widely used in the precision machining of various parts.However,these abrasives cannot satisfy the machining requirements of difficult-to-machine materials with high hardness,high strength,and strong wearing resistance.Although superhard abrasives can machine the above-mentioned materials,their dressing and manufacturing costs are high.By contrast,ceramic corundum abrasives fabricated by sol–gel method is a costeffective product between conventional and superhard abrasives.Ceramic corundum abrasives exhibit self-sharpening and high toughness.In this review,the optimization methods of ceramic corundum abrasive properties are introduced from three aspects:precursor synthesis,particle shaping,and sintering.Firstly,the functional mechanism of seeds and additives on the microstructural and mechanical properties of abrasives is analyzed.Specifically,seeds can reduce the phase transition temperature and improve fracture toughness.The grain size and uniformly dense structure can be controlled by applying an appropriate amount of multicomponent additives.Then,the urgent need of engineering application and machinability of special shape ceramic corundum abrasives is reviewed,and three methods of abrasive shaping are summarized.The micromold replication technique is highly advanced and can be used to prepare functional abrasives.Additionally,the influence of a new sintering method,namely,two-step sintering technique,on the microstructural and mechanical performance of ceramic corundum abrasives is summarized.Finally,the challenge and developmental trend of the optimization of ceramic corundum abrasives are prospected. 展开更多
关键词 Ceramic corundum abrasive Seed Shaping technique Sintering additive Sol–Gel two-step sintering process
原文传递
Effect of Cu content on microstructures and mechanical properties of ADI treated by twostep austempering process 被引量:1
5
作者 Peng-yue Yi Er-jun Guo +2 位作者 Li-ping Wang Yi-cheng Feng Chang-liang Wang 《China Foundry》 SCIE 2019年第3期168-176,共9页
The effect of Cu content on the microstructures and mechanical properties (yield strength, ultimate tensile strength, impact energy, fracture toughness) of austempering ductile iron (ADI) treated by two-step austemper... The effect of Cu content on the microstructures and mechanical properties (yield strength, ultimate tensile strength, impact energy, fracture toughness) of austempering ductile iron (ADI) treated by two-step austempering process were investigated. High Cu content in nodular cast irons leads to a significant volume fraction of retained austenite in the iron after austempering treatment, but the carbon content of austenite decreases with the increasing of Cu content. Moreover, austenitic stability reaches its maximum when the Cu content is 1.4% and then drops rapidly with further increase of Cu. The ultimate tensile strength and yield strength of the ADI firstly increases and then decreases with increasing the Cu content. The elongation keeps constant at 6.5% as the Cu content increases from 0.2% to 1.4%, and then increases rapidly to 10.0% with further increase Cu content to 2.0%. Impact toughness is enhanced with Cu increasing at first, and reaches a maximum 122.9 J at 1.4% Cu, then decreases with the further increase of Cu. The fracture toughness of ADI shows a constant increase with the increase of Cu content. The influencing mechanism of Cu on austempered ductile iron (ADI) can be classified into two aspects. On the one hand, Cu dissolves into the matrix and functions as solid solution strengthening. On the other hand, Cu reduces solubility of C in austenite and contributes more stable retained austenite. 展开更多
关键词 Cu-alloyed ADI two-step AUSTEMPERING process mechanical properties AUSTENITE stability
在线阅读 下载PDF
One-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions:Atom-economic synthesis of selenocarbamates and allyl sulfones 被引量:1
6
作者 Jing-Jing Ai Jian Li +1 位作者 Shun-Jun Ji Shun-Yi Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第2期721-724,共4页
In many reactions involving selenosulfonate or thiosulfonate,the sutfone group often leaves in form of benzenesutfinic acid or sodium benzenesulfinate.A one-pot two-step reaction of selenosulfonate with isocyanides an... In many reactions involving selenosulfonate or thiosulfonate,the sutfone group often leaves in form of benzenesutfinic acid or sodium benzenesulfinate.A one-pot two-step reaction of selenosulfonate with isocyanides and allyl alcohol under aqueous conditions to afford selenocarbamates and allyl sulfone compounds is reported.The sulfinic acid as the first-step side product is converted to the allyl sulfone compound by water promoted reaction with allyl alcohol.Water acts as both an oxygen source of selenocarbamates and as a promoter to drive the second step reactio n.The reactions have the advantages of mild conditions,green,environment-friendly,and high atomic economy. 展开更多
关键词 Aqueous conditions One-pot two-step process Benzenesulfinic acid Selenocarbamate Allyl sulfone compound
原文传递
Burning characteristics of high density foamed GAP/CL-20 propellants 被引量:5
7
作者 Man-man Li Rui Hu +2 位作者 Ming-hui Xu Qiong-lin Wang Wei-tao Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1914-1921,共8页
The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,... The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes.Glycidyl azide polymer(GAP)and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane(HNIW,CL-20)was employed as the energetic component.The newly designed formulation containing 60%CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K.Two foamed propellants with densities of 1.32 g/cm^(3)and 1.53 g/cm^(3)were fabricated by a confined foaming process and examined by closed bomb tests.The results revealed that porosity significantly affects burning performance.A size effect on combustion behaviors was observed for the foamed propellant with 5.56%porosity,and a double-hump progressive dynamic vivacity curve was obtained.At last,the 30 mm gun test was carried out to demonstrate the interior ballistic performance,and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge. 展开更多
关键词 Monolithic foamed propellants two-step foaming process Casting process GAP/CL-20
在线阅读 下载PDF
Microstructure and mechanical properties of twostep Cu-alloyed ADI treated by different second step austempering temperatures and times
8
作者 Peng-yue Yi Er-jun Guo +2 位作者 Li-ping Wang Yi-cheng Feng Chang-liang Wang 《China Foundry》 SCIE 2019年第5期342-351,共10页
Austempering ductile iron (ADI) is an attractive material due to its excellent comprehensive mechanical properties. However, the deficit in elongation and toughness always threatens its security application. Two-step ... Austempering ductile iron (ADI) is an attractive material due to its excellent comprehensive mechanical properties. However, the deficit in elongation and toughness always threatens its security application. Two-step austempering process is an effective way to improve elongation and toughness simultaneously. In the present work, the influence of the amount, morphology and distribution of ferrite and austenite on mechanical properties of ADI under different second-step austempering parameters has been analyzed. Results show that the amount of austenite and its carbon content decrease with increasing of second-step temperature. Carbide begins to precipitate as second-step austempering temperature reaches 380 °C. These factors together influence the mechanical properties of two-step Cu-alloyed ADI. Impact energy and fracture toughness are strongly affected by second-step austempering temperature, and are dramatically decreased with increase of second-step austempering temperature. Elongation remains constant when the second-step temperature is below 360 °C, and then it is rapidly decreased with further increase of second-step temperature. Strength is slightly influenced by second-step temperature. Ferrite morphology is not influenced by second-step austempering duration, while blocky retained austenite size is slightly decreased with the increasing of second-step austempering time. The amount of retained austenite is decreased while the carbon content of retained austenite is increased with the extending of second-step austempering time. The substructure of austenite is transformed from dislocation to twin when second-step austempering time exceeds 60 min. Strength and elongation are improved slightly with extending of second-step time. Impact energy and fracture toughness initially decrease with the extending of second-step time, and then remain constant when the time is longer than 60 min. This is a result of austenite content decreasing and carbon content of austenite increasing. The second-step austempering time mainly influences austenite content and its carbon content, which is a result of carbon diffusion behavior variation. 展开更多
关键词 two-step AUSTEMPERING process Cu-alloyed ADI microstructure mechanical properties fracture toughness
在线阅读 下载PDF
Seismic description and fluid identification of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield
9
作者 SHU Ningkai SU Chaoguang +5 位作者 SHI Xiaoguang LI Zhiping ZHANG Xuefang CHEN Xianhong ZHU Jianbing SONG Liang 《Petroleum Exploration and Development》 CSCD 2021年第4期889-899,共11页
The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tid... The meandering channel deposit of the upper member of Neogene Guantao Formation in Shengli Chengdao extra-shallow sea oilfield is characterized by rapid change in sedimentary facies.In addition,affected by surface tides and sea water reverberation,the double sensor seismic data processed by conventional methods has low signal-to-noise ratio and low resolution,and thus cannot meet the needs of seismic description and oil-bearing fluid identification of thin reservoirs less than 10 meters thick in this area.The two-step high resolution frequency bandwidth expanding processing technology was used to improve the signal-to-noise ratio and resolution of the seismic data,as a result,the dominant frequency of the seismic data was enhanced from 30 Hz to 50 Hz,and the sand body thickness resolution was enhanced from 10 m to 6 m.On the basis of fine layer control by seismic data,three types of seismic facies models,floodplain,natural levee and point bar,were defined,and the intelligent horizon-facies controlled recognition technology was worked out,which had a prediction error of reservoir thickness of less than 1.5 m.Clearly,the description accuracy of meandering channel sand bodies has been improved.The probability semi-quantitative oiliness identification method of fluid by prestack multi-parameters has been worked out by integrating Poisson’s ratio,fluid factor,product of Lame parameter and density,and other prestack elastic parameters,and the method has a coincidence rate of fluid identification of more than 90%,providing solid technical support for the exploration and development of thin reservoirs in Shengli Chengdao extra-shallow sea oilfield,which is expected to provide reference for the exploration and development of similar oilfields in China. 展开更多
关键词 Jiyang Depression Chengdao Oilfield extra-shallow sea NEOGENE Sea and land dual-sensor prestack two-step high resolution frequency bandwidth expanding processing intelligent horizon-facies controlled recognition technology prestack seismic fluid identification
在线阅读 下载PDF
Sodium-doped carbon nitride nanotubes for efficient visible light-driven hydrogen production 被引量:6
10
作者 Longshuai Zhang Ning Ding +10 位作者 Muneaki Hashimoto Koudai Iwasaki Noriyasu Chikamori Kazuya Nakata Yuzhuan Xu Jiangjian Shi Huijue Wu Yanhong Luo Dongmei Li Akira Fujishima Qingbo Meng 《Nano Research》 SCIE EI CAS CSCD 2018年第4期2295-2309,共15页
Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) elemen... Sodium-doped carbon nitride nanotubes (Nax-CNNTs) were prepared by a green and simple two-step method and applied in photocatalytic water splitting for the first time. Transmission electron microscopy (TEM) element mapping and X-ray photoelectron spectroscopy (XPS) measurements confirm that sodium was successfully introduced in the carbon nitride nanotubes (CNNTs), and the intrinsic structure of graphitic carbon nitride (g-C3N4) was also maintained in the products. Moreover, the porous structure of the CNNTs leads to relatively large specific surface areas. Photocatalytic tests indicate that the porous tubular structure and Na+ doping can synergistically enhance the hydrogen evolution rate under visible light (λ 〉 420 nm) irradiation in the presence of sacrificial agents, leading to a hydrogen evolution rate as high as 143 μmol·h-1 (20 mg catalyst). Moreover, other alkali metal-doped CNNTs, such as Lix-CNNTs and Kx-CNNTs, were tested; both materials were found to enhance the hydrogen evolution rate, but to a lower extent compared with the Nax-CNNTs. This highlights the general applicability of the present method to prepare alkali metal-doped CNNTs; a preliminary mechanism for the photocatalytic hydrogen evolution reaction in the Nax-CNNTs is also proposed. 展开更多
关键词 graphitic carbon nitrides NANOTUBES alkali metal doping photocatalytic hydrogen production hydrothermal/thermopolymerization processes two-step synthesis
原文传递
GaN grown on nano-patterned sapphire substrates 被引量:2
11
作者 孔静 冯美鑫 +3 位作者 蔡金 王辉 王怀兵 杨辉 《Journal of Semiconductors》 EI CAS CSCD 2015年第4期26-29,共4页
High-quality gallium nitride (GaN) film was grown on nano-pattemed sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN bulter layer on the NPSS is 15 n... High-quality gallium nitride (GaN) film was grown on nano-pattemed sapphire substrates (NPSS) and investigated using XRD and SEM. It was found that the optimum thickness of the GaN bulter layer on the NPSS is 15 nm, which is thinner than that on micro-patterned sapphire substrates (MPSS). An interesting phenomenon was observed for GaN film grown on NPSS:GaN mainly grows on the trench regions and little grows on the sidewalls of the patterns at the initial growth stage, which is dramatically different from GaN grown on MPSS. In addition. the electrical and optical properties of LEDs grown on NPSS were characterized. 展开更多
关键词 GAN nano-patterned sapphires (NPSS) LED two-step growth process
原文传递
Grain growth behavior and properties of high-entropy pseudobrookite(Mg,Co,Ni,Zn)Ti_(2)O_(5) ceramics
12
作者 Xiaohui Ma Jinyu Wu +5 位作者 Lingyi Meng Jinfeng Zhang Heng Chen Liwen Yan Anran Guo Jiachen Liu 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第6期757-768,共12页
It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resu... It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resulting in the formation of many abnormally grown grains with a grain size as large as 50 μm. To study this phenomenon, the grain growth behavior of high-entropy pseudobrookite ceramics was systematically investigated in this paper. The results demonstrate that the starting material powders first react with each other to form a high-entropy intermediate phase and calcined TiO_(2) powders (TiO_(2)-1100 ℃), and then as the sintering temperature increases, the formed high-entropy intermediate phase further reacts with TiO_(2)-1100 ℃ to form high-entropy pseudobrookite ceramics. Thus, in this system, in addition to the sluggish diffusion effect, the grain sizes of the high-entropy intermediate phase and TiO_(2)-1100 ℃ also affect the morphology of high-entropy pseudobrookite. Compared to nanosized TiO_(2), micron-sized TiO_(2) has a lower sintering activity. Therefore, the high-entropy intermediate phases (Mg,Co,Ni,Zn)TiO_(3) and TiO_(2)-1100 ℃ prepared with micron-sized starting materials exhibit lower grain sizes, finally resulting in the formation of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with small grain sizes. Moreover, nano-indentation and thermal conductivity tests were carried out on high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with different morphologies. The results show that the hardness of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) increases from 6.05 to 9.95 GPa as the grain size increases, whereas the thermal conductivity decreases from 2.091±0.006 to 1.583±0.006 W·m^(−1)·K^(−1). All these results indicate that high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with a small grain size is a potential material for thermal protection. 展开更多
关键词 grain size sluggish diffusion effect two-step solid phase process high-entropy intermediate phase high-entropy pseudobrookite ceramic
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部