Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarb...Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high.展开更多
The concentration of hydrogen sulfide gas (H2S) varies greatly in the oil-bearing basins of China, from zero to 90%. At present, oil and gas reservoirs with high H2S concentration have been discovered in three basin...The concentration of hydrogen sulfide gas (H2S) varies greatly in the oil-bearing basins of China, from zero to 90%. At present, oil and gas reservoirs with high H2S concentration have been discovered in three basins, viz. the Bohai Bay Basin, Sichuan Basin and the Tarim Basin, whereas natural gas with low H2S concentration has been found in the Ordos Basin, the Songliao Basin and the Junggar Basin. Studies suggest that in China H2S origin types are very complex. In the carbonate reservoir of the Sichuan Basin, the Ordos Basin and the Tarim Basin, as well as the carbonatedominated reservoir in the Luojia area of the Jiyang depression in the Bohai Bay Basin, Wumaying areas of the Huanghua depression, and Zhaolanzhuang areas of the Jizhong depression, the H2S is of Thermochemical Sulfate Reduction (TSR) origin. The H2S is of Bacterial Sulphate Reduction (BSR) origin deduced from the waterflooding operation in the Changheng Oilfield (placanticline oil fields) in the Songliao Basin. H2S originates from thermal decomposition of sulfur-bearing crude oil in the heavy oil area in the Junggar Basin and in the Liaohe heavy oil steam pilot area in the western depression of the Bohai Bay Basin. The origin types are most complex, including TSR and thermal decomposition of sulfcompounds among other combinations of causes. Various methods have been tried to identify the origin mechanism and to predict the distribution of H2S. The origin identification methods for H2S mainly comprise sulfur and carbon isotopes, reservoir petrology, particular biomarkers, and petroleum geology integrated technologies; using a combination of these applications can allow the accurate identification of the origins of H2S. The prediction technologies for primary and secondary origin of H2S have been set up separately.展开更多
Exploration and development experience show that there is obvious oil gravity difference between the southern part and northern part of the "M1"reservoir in the Fanny oil field in the slope of the Oriente Basin, Ecu...Exploration and development experience show that there is obvious oil gravity difference between the southern part and northern part of the "M1"reservoir in the Fanny oil field in the slope of the Oriente Basin, Ecuador. The American Petroleum Institute Gravity (API) values of oils in the northern part are higher than the one in the southern part of the Fanny oil field, with the values of 20° and 10.0°-13.0°, respectively. So the primary purpose of this study was to analyze the heavy oil characteristics of biodegradation and the oil-oil correlation according to the biomarker data and the δ^13C signature of oil samples from T block. The results of the hydrocarbon gas chromatography fingermark and the inversion attribute characteristics indicated that there are fluid compartments between the "M1" reservoir of Fanny south. Finally, the models of oil-gas accumulation under the control of multiple-activities of complicated fault systems, as well as the origin of heavy oil, are contended. The early stage oils from the western part of the basin were biodegraded heavily in varying degrees in the whole basin, and the later stage oils were derived from the southern part in a large scale and were mature and lighter. Generally, oil mixing is the primary control of net oil properties, such as API gravity in Oriente Basin. We therefore predicted that the API gravity variation of oil pools radically depends on the injection amount of the later stage oil. Because of the shale barrier in the "M1"reservoir of Fanny south, the later stage hydrocarbon could not pass through and contribute to increase the oil API value.展开更多
The original oil saturation of the reservoir is of vital importance for reservoir evaluation and calculation of geological reserves.To determine the original oil saturation of the reservoir and provide a reference for...The original oil saturation of the reservoir is of vital importance for reservoir evaluation and calculation of geological reserves.To determine the original oil saturation of the reservoir and provide a reference for reservoir evaluation and geological reserve calculation,this paper takes the sandstone of the Chang 9 oil layer group in the Zhouchang oil area of Wuqi Oilfield in the Ordos Basin as the research object.Based on core,logging,mud logging and well testing data,combined with experimental data,four methods,namely the closed core method,mercury injection method,relative permeability method and logging interpretation method,are used to calculate the original oil saturation of the Chang 9 oil layer in the northeastern Wuqi area.The advantages and disad-vantages of each method are analyzed to determine the original oil saturation that is suitable for the Chang 9 oil layer group in this area and thereby improve the accuracy of reserve calculation.The results show that the comprehensive logging interpretation method is the best method for calculating the original oil saturation in this area,and the original oil saturation is finally determined to be 54.6%.展开更多
A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%o...A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.展开更多
文摘Great quantities of light oil and gas are produced from deep buried hill reservoirs at depths of 5,641 m to 6,027 m and 190 ℃ to 201 ℃ in the Niudong-1 Well, representing the deepest and hottest commercial hydrocarbons discovered in the Bohai Bay Basin in eastern China. This discovery suggests favorable exploration prospects for the deep parts of the basin. However, the discovery raises questions regarding the genesis and accumulation of hydrocarbons in deep reservoirs. Based on the geochemical features of the hydrocarbons and characteristics of the source rocks as well as thermal simulation experiments of hydrocarbon generation, we conclude that the oil and gas were generated from the highly mature Sha-4 Member (Es4) source rocks instead of thermal cracking of crude oils in earlier accumulations. The source kitchen with abnormal pressures and karsted carbonate reservoirs control the formation of high-maturity hydrocarbon accumulations in the buried hills (i.e., Niudong-1) in conjunction with several structural-lithologic traps in the ES4 reservoirs since the deposition of the upper Minghuazhen Formation. This means the oil and gas exploration potential in the deep parts of the Baxian Depression is probably high.
基金supported by the National Natural Science Foundation of China (Grant Nos 4060201640773032)the National Basic Research Program of China (contract No.2007CB209500)
文摘The concentration of hydrogen sulfide gas (H2S) varies greatly in the oil-bearing basins of China, from zero to 90%. At present, oil and gas reservoirs with high H2S concentration have been discovered in three basins, viz. the Bohai Bay Basin, Sichuan Basin and the Tarim Basin, whereas natural gas with low H2S concentration has been found in the Ordos Basin, the Songliao Basin and the Junggar Basin. Studies suggest that in China H2S origin types are very complex. In the carbonate reservoir of the Sichuan Basin, the Ordos Basin and the Tarim Basin, as well as the carbonatedominated reservoir in the Luojia area of the Jiyang depression in the Bohai Bay Basin, Wumaying areas of the Huanghua depression, and Zhaolanzhuang areas of the Jizhong depression, the H2S is of Thermochemical Sulfate Reduction (TSR) origin. The H2S is of Bacterial Sulphate Reduction (BSR) origin deduced from the waterflooding operation in the Changheng Oilfield (placanticline oil fields) in the Songliao Basin. H2S originates from thermal decomposition of sulfur-bearing crude oil in the heavy oil area in the Junggar Basin and in the Liaohe heavy oil steam pilot area in the western depression of the Bohai Bay Basin. The origin types are most complex, including TSR and thermal decomposition of sulfcompounds among other combinations of causes. Various methods have been tried to identify the origin mechanism and to predict the distribution of H2S. The origin identification methods for H2S mainly comprise sulfur and carbon isotopes, reservoir petrology, particular biomarkers, and petroleum geology integrated technologies; using a combination of these applications can allow the accurate identification of the origins of H2S. The prediction technologies for primary and secondary origin of H2S have been set up separately.
文摘Exploration and development experience show that there is obvious oil gravity difference between the southern part and northern part of the "M1"reservoir in the Fanny oil field in the slope of the Oriente Basin, Ecuador. The American Petroleum Institute Gravity (API) values of oils in the northern part are higher than the one in the southern part of the Fanny oil field, with the values of 20° and 10.0°-13.0°, respectively. So the primary purpose of this study was to analyze the heavy oil characteristics of biodegradation and the oil-oil correlation according to the biomarker data and the δ^13C signature of oil samples from T block. The results of the hydrocarbon gas chromatography fingermark and the inversion attribute characteristics indicated that there are fluid compartments between the "M1" reservoir of Fanny south. Finally, the models of oil-gas accumulation under the control of multiple-activities of complicated fault systems, as well as the origin of heavy oil, are contended. The early stage oils from the western part of the basin were biodegraded heavily in varying degrees in the whole basin, and the later stage oils were derived from the southern part in a large scale and were mature and lighter. Generally, oil mixing is the primary control of net oil properties, such as API gravity in Oriente Basin. We therefore predicted that the API gravity variation of oil pools radically depends on the injection amount of the later stage oil. Because of the shale barrier in the "M1"reservoir of Fanny south, the later stage hydrocarbon could not pass through and contribute to increase the oil API value.
文摘The original oil saturation of the reservoir is of vital importance for reservoir evaluation and calculation of geological reserves.To determine the original oil saturation of the reservoir and provide a reference for reservoir evaluation and geological reserve calculation,this paper takes the sandstone of the Chang 9 oil layer group in the Zhouchang oil area of Wuqi Oilfield in the Ordos Basin as the research object.Based on core,logging,mud logging and well testing data,combined with experimental data,four methods,namely the closed core method,mercury injection method,relative permeability method and logging interpretation method,are used to calculate the original oil saturation of the Chang 9 oil layer in the northeastern Wuqi area.The advantages and disad-vantages of each method are analyzed to determine the original oil saturation that is suitable for the Chang 9 oil layer group in this area and thereby improve the accuracy of reserve calculation.The results show that the comprehensive logging interpretation method is the best method for calculating the original oil saturation in this area,and the original oil saturation is finally determined to be 54.6%.
文摘A significant fraction of the conventional oil reserves globally is in carbonate formations which contain a substantial amount of residual oil. Since primary and secondary recovery methods fail to yield above 20%-40%of original oil in place from these reserves, the need for enhanced oil recovery(EOR) techniques for incremental oil recovery has become imperative. With the challenges presented by the highly heterogeneous carbonate rocks,evaluation of tertiary-stage recovery techniques including chemical EOR(c EOR) has been a high priority for researchers and oil producers. In this review, the latest developments in the surfactant-based c EOR techniques applied in carbonate formations are discussed, contemplating the future direction of existing methodologies. In connection with this, the characteristics of heterogeneous carbonate reservoirs are outlined. Detailed discussion on surfactant-led oil recovery mechanisms and related processes, such as wettability alteration, interfacial tension reduction, microemulsion phase behavior, surfactant adsorption and mitigation, and foams and their applications is presented. Laboratory experiments, as well as field study data obtained using several surfactants, are also included.This extensive discussion on the subject aims to help researchers and professionals in the field to understand the current situation and plan future enterprises accordingly.