PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations...PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations in real time(i.e.,only 9 locations for PM_(1.0) vs.623 locations for PM2.5 or PM10)in South Korea,making it impossible to conduct a nationwide health risk analysis of PM_(1.0).Thus,this study aimed to develop a PM_(1.0) prediction model using a random forest algorithm based on PM_(1.0) data from the nine measurement stations and various environmental input factors.Cross validation,in which the model was trained in eight stations and tested in the remaining station,achieved an average R^(2) of 0.913.The high R^(2) value achieved undermutually exclusive training and test locations in the cross validation can be ascribed to the fact that all the locations had similar relationships between PM_(1.0) and the input factors,which were captured by our model.Moreover,results of feature importance analysis showed that PM2.5 and PM10 concentrations were the two most important input features in predicting PM_(1.0) concentration.Finally,the model was used to estimate the PM_(1.0) concentrations in 623 locations,where input factors such as PM2.5 and PM10 can be obtained.Based on the augmented profile,we identified Seoul and Ansan to be PM_(1.0) concentration hotspots.These regions are large cities or the center of anthropogenic and industrial activities.The proposed model and the augmented PM_(1.0) profiles can be used for large epidemiological studies to understand the health impacts of PM_(1.0).展开更多
基金supported by the Fine Particle Research Initiative in East Asia Considering National Differences Project through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(No.NRF-2023M3G1A1090660)supported by a grant from the National Institute of Environmental Research(NIER),funded by the Ministry of Environment of the Republic of Korea(No.NIER-2023-04-02-056).
文摘PM_(1.0),particulate matter with an aerodynamic diameter smaller than 1.0μm,can adversely affect human health.However,fewer stations are capable of measuring PM_(1.0) concentrations than PM2.5 and PM10 concentrations in real time(i.e.,only 9 locations for PM_(1.0) vs.623 locations for PM2.5 or PM10)in South Korea,making it impossible to conduct a nationwide health risk analysis of PM_(1.0).Thus,this study aimed to develop a PM_(1.0) prediction model using a random forest algorithm based on PM_(1.0) data from the nine measurement stations and various environmental input factors.Cross validation,in which the model was trained in eight stations and tested in the remaining station,achieved an average R^(2) of 0.913.The high R^(2) value achieved undermutually exclusive training and test locations in the cross validation can be ascribed to the fact that all the locations had similar relationships between PM_(1.0) and the input factors,which were captured by our model.Moreover,results of feature importance analysis showed that PM2.5 and PM10 concentrations were the two most important input features in predicting PM_(1.0) concentration.Finally,the model was used to estimate the PM_(1.0) concentrations in 623 locations,where input factors such as PM2.5 and PM10 can be obtained.Based on the augmented profile,we identified Seoul and Ansan to be PM_(1.0) concentration hotspots.These regions are large cities or the center of anthropogenic and industrial activities.The proposed model and the augmented PM_(1.0) profiles can be used for large epidemiological studies to understand the health impacts of PM_(1.0).