This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. T...This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury, compared with normal saline-treated rats. This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury. Overall, the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.展开更多
With three theoretical models of nuclear effects on gluon distribution functions,the differentialcross sections and the total cross sections for associate production of J/ψ and γ with large P_T in high energyp-Fe co...With three theoretical models of nuclear effects on gluon distribution functions,the differentialcross sections and the total cross sections for associate production of J/ψ and γ with large P_T in high energyp-Fe collisions are calculated.展开更多
On February 25, the Unit 1 of Ling’ao Nuclear Power Plant phase II underwent a 41-day-long hot functional test successfully with its major systems satisfying the requirements for
In this work, reaction cross-sections were calculated and Excitation Functions were evaluated for productions of 208Bi, 212,211,210At, 211,210Po isotopes using EXIFON code in the energy range from 0 MeV to 30 MeV. The...In this work, reaction cross-sections were calculated and Excitation Functions were evaluated for productions of 208Bi, 212,211,210At, 211,210Po isotopes using EXIFON code in the energy range from 0 MeV to 30 MeV. The code is based on an analytical model for statistical multistep direct and multistep compound reactions (SMD/SMC model). This work also investigates the shell structure effect on the reaction cross-section, the results obtained show that the cross-sections of (a, na) reaction for both with shell correction and without shell correction are zeros at energies range considered, this shows that the energy of the incident particle is below the threshold of this reaction due to the present of coulomb repulsive force between the projectile and target nucleus.展开更多
Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe co...Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe condition that those conflicting issues are gotten a consensus between stakeholders with different knowledgebackground, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has beendeveloped to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle systembased on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theoryof human being. Its character is that MFM models define a set of mass, energy and information flow structures onmultiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representationand the means-end and part-whole hierarchical flow structure to make the represented process easy to beunderstood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system wereselected to be simulated and some analysis processes such as economics analysis, environmental analysis and energybalance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finallythe simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycleand its levelised cost analysis will be represented as feasible examples.展开更多
Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the s...Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the single electron in 1s orbit is expressed as φ2, a function of distance from the nucleus. However, the probability of existence of the electron is expressed as a radial distribution function at an arbitrary distance from the nucleus, so it is estimated as the probability of the entire spherical shape of that radius. In this study, it has been found that the electron existence probability approximates the radial distribution function by assuming that the probability of existence of the electron being in the vicinity of the nucleus follows a normal distribution for arbitrary x-, y-, and z-axis directions. This implies that the probability of existence of the electron, which has been known only from the distance information, would follow a normal distribution independently in the three directions. When the electrons’ motion is extremely restricted in a certain direction by the magnetic field of both tokamak and helical fusion reactors, the probability of existence of the electron increases with proximity to the nucleus, and as a result, it is less likely to be liberated from the nucleus. Therefore, more and more energy is required to free the nucleus from the electron in order to generate plasma.展开更多
In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integral...In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.展开更多
3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain...3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.展开更多
In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup&...In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup>1</sup>D<sup>e</sup>, (<em>nd</em><sup>2</sup>) <sup>1</sup>G<sup>e</sup>, (<em>nf</em><sup>2</sup>) <sup>1</sup>I<sup>e</sup>, (<em>ng</em><sup>2</sup>) <sup>1</sup>K<sup>e</sup>, and (<em>nh</em><sup>2</sup>) <sup>1</sup>M<sup>e</sup> of the helium isoelectronic sequence with Z ≤ 10 are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge (SCUNC). These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States(DES) in two-electron systems is demonstrated in the present work in the case of the (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></span></sup> doubly excited states, where accurate total energies are tabulated up to <em>n</em> = 20. All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></sup> states of two-electron systems.展开更多
This paper presents a multi-criteria evaluation methodology for nuclear fuel cycle options in terms of energy sustainability. Starting from the general sustainability concept and the public acceptance questionnaire, a...This paper presents a multi-criteria evaluation methodology for nuclear fuel cycle options in terms of energy sustainability. Starting from the general sustainability concept and the public acceptance questionnaire, a set of indicators reflecting specific criteria for the evaluation of nuclear fuel cycle options are defined. Particular attention is devoted to the resource utility efficiency, environmental effect, human health hazard and economic effect, which represent the different concerns of different stakeholders. This methodology also integrated a special mathematic processing approach, namely the Extentics Evaluation Method, which quantifies the human being subjective perception to provide the intuitionistic judgement and comparison for different options. The once-through option and reprocessing option of nuclear fuel cycle are examined by using the proposed methodology. The assessment process and result can give us some guidance in nuclear fuel cycle evaluation under the constraint of limited data.展开更多
文摘This study sought to elucidate the changes of nuclear factor kappa B (NF-KB) expression and locomotor function of hind limb after subdural injection of BMS-345541 was applied in rats with acute spinal cord injury. The results indicated that BMS-345541 treatment reduced the expression of NF-kB at 24 hours after injury, compared with normal saline-treated rats. This treatment also led to a significant improvement in locomotor functional recovery at 14 days after injury. Overall, the findings demonstrated that BMS-345541 significantly ameliorated spinal cord injury-induced hind limb dysfunction by inhibiting the expression of NF-kB after spinal cord injury.
基金The project supported in part by the National Natural Science Foundation of Chinathe Doctoral Program Foundation of Institution of Higher Education of Chinathe Provincial Natural Science Foundation of Hebei
文摘With three theoretical models of nuclear effects on gluon distribution functions,the differentialcross sections and the total cross sections for associate production of J/ψ and γ with large P_T in high energyp-Fe collisions are calculated.
文摘On February 25, the Unit 1 of Ling’ao Nuclear Power Plant phase II underwent a 41-day-long hot functional test successfully with its major systems satisfying the requirements for
文摘In this work, reaction cross-sections were calculated and Excitation Functions were evaluated for productions of 208Bi, 212,211,210At, 211,210Po isotopes using EXIFON code in the energy range from 0 MeV to 30 MeV. The code is based on an analytical model for statistical multistep direct and multistep compound reactions (SMD/SMC model). This work also investigates the shell structure effect on the reaction cross-section, the results obtained show that the cross-sections of (a, na) reaction for both with shell correction and without shell correction are zeros at energies range considered, this shows that the energy of the incident particle is below the threshold of this reaction due to the present of coulomb repulsive force between the projectile and target nucleus.
文摘Complex energy and environment system, especially nuclear fuel cycle system recently raised socialconcerns about the issues of economic competitiveness, environmental effect and nuclear proliferation. Only underthe condition that those conflicting issues are gotten a consensus between stakeholders with different knowledgebackground, can nuclear power industry be continuingly developed. In this paper, a new analysis platform has beendeveloped to help stakeholders to recognize and analyze various socio-technical issues in the nuclear fuel cycle systembased on the functional modeling method named Multilevel Flow Models (MFM) according to the cognition theoryof human being. Its character is that MFM models define a set of mass, energy and information flow structures onmultiple levels of abstraction to describe the functional structure of a process system and its graphical symbol representationand the means-end and part-whole hierarchical flow structure to make the represented process easy to beunderstood. Based upon this methodology, a micro-process and a macro-process of nuclear fuel cycle system wereselected to be simulated and some analysis processes such as economics analysis, environmental analysis and energybalance analysis related to those flows were also integrated to help stakeholders to understand the process of decision-making with the introduction of some new functions for the improved Multilevel Flow Models Studio, and finallythe simple simulation such as spent fuel management process simulation and money flow of nuclear fuel cycleand its levelised cost analysis will be represented as feasible examples.
文摘Since the position of the electron in a hydrogen atom cannot be determined, the region in which it resides is said to be determined stochastically and forms an electron cloud. The probability density function of the single electron in 1s orbit is expressed as φ2, a function of distance from the nucleus. However, the probability of existence of the electron is expressed as a radial distribution function at an arbitrary distance from the nucleus, so it is estimated as the probability of the entire spherical shape of that radius. In this study, it has been found that the electron existence probability approximates the radial distribution function by assuming that the probability of existence of the electron being in the vicinity of the nucleus follows a normal distribution for arbitrary x-, y-, and z-axis directions. This implies that the probability of existence of the electron, which has been known only from the distance information, would follow a normal distribution independently in the three directions. When the electrons’ motion is extremely restricted in a certain direction by the magnetic field of both tokamak and helical fusion reactors, the probability of existence of the electron increases with proximity to the nucleus, and as a result, it is less likely to be liberated from the nucleus. Therefore, more and more energy is required to free the nucleus from the electron in order to generate plasma.
文摘In this paper, we give a definition of the Fermi function, or the so-called Woods-Saxon potential, a well-known potential in nuclear physics;then, we give a few of its applications as examples. Some important integrals, which involve this function, are computed discussing the integrability and convergence of these integrals. Following, we derive formulae that encounter the above-mentioned function to get nuclear and generalized moments;the radial Fourier transformation is also exposed. Some related applications are then given that use such important integrals;in particular, we give the computation in conjunction with the problem of getting the optical-model potential for heavy-ion interactions at intermediate energies. Finally, we conclude with important remarks to do with the evolution of the subject.
基金supported by the National Natural Science Foundation of China,No.81141013a grant for Talents in Beijing,No.2011D003034000019
文摘3.0T magnetic resonance spectroscopic imaging brain function in Alzheimer's disease. However, is a commonly used method in the research ot the role of 7.0T high-field magnetic resonance spectroscopic imaging in brain function of Alzheimer's disease remains unclear. In this study, 7.0T magnetic resonance spectroscopy showed that in the hippocampus of Alzheimer's disease rats, the N-acetylaspartate wave crest was reduced, and the creatine and choline wave crest was elevated. This finding was further supported by hematoxylin-eosin staining, which showed a loss of hippocampal neurons and more glial cells. Moreover, electron microscopy showed neuronal shrinkage and mitochondrial rupture, and scanning electron microscopy revealed small size hippocampal synaptic vesicles, incomplete synaptic structure, and reduced number. Overall, the results revealed that 7.0T high-field nuclear magnetic resonance spectroscopy detected the lesions and functional changes in hippocampal neurons of Alzheimer's disease rats in vivo, allowing the possibility for assessing the success rate and grading of the amyloid beta (1-40) animal model of Alzheimer's disease.
文摘In this work, the total energies of doubly excited states (<em>ns</em><sup>2</sup>) <sup>1</sup>S<sup>e</sup>, (<em>np</em><sup>2</sup>) <sup>1</sup>D<sup>e</sup>, (<em>nd</em><sup>2</sup>) <sup>1</sup>G<sup>e</sup>, (<em>nf</em><sup>2</sup>) <sup>1</sup>I<sup>e</sup>, (<em>ng</em><sup>2</sup>) <sup>1</sup>K<sup>e</sup>, and (<em>nh</em><sup>2</sup>) <sup>1</sup>M<sup>e</sup> of the helium isoelectronic sequence with Z ≤ 10 are calculated in the framework of the variational method of the Screening Constant by Unit Nuclear Charge (SCUNC). These calculations are performed using a new wavefunction correlated to Hylleraas-type. The possibility of using the SCUNC method in the investigation of high-lying Doubly Excited States(DES) in two-electron systems is demonstrated in the present work in the case of the (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></span></sup> doubly excited states, where accurate total energies are tabulated up to <em>n</em> = 20. All the results obtained in this paper are in agreement with the values of the available literature and may be useful for future experimental and theoretical studies on the doubly excited (<em>nl</em><sup>2</sup>) <sup>1</sup><em>L</em><sup><span style="white-space:nowrap;"><span style="white-space:nowrap;"><em>π</em></span></span></sup> states of two-electron systems.
文摘This paper presents a multi-criteria evaluation methodology for nuclear fuel cycle options in terms of energy sustainability. Starting from the general sustainability concept and the public acceptance questionnaire, a set of indicators reflecting specific criteria for the evaluation of nuclear fuel cycle options are defined. Particular attention is devoted to the resource utility efficiency, environmental effect, human health hazard and economic effect, which represent the different concerns of different stakeholders. This methodology also integrated a special mathematic processing approach, namely the Extentics Evaluation Method, which quantifies the human being subjective perception to provide the intuitionistic judgement and comparison for different options. The once-through option and reprocessing option of nuclear fuel cycle are examined by using the proposed methodology. The assessment process and result can give us some guidance in nuclear fuel cycle evaluation under the constraint of limited data.