With the daily SINEX files of the IGS, the time series of IGS stations are obtained using an independently developed software under generalized network adjustment models with coordinate patterns. From the time series,...With the daily SINEX files of the IGS, the time series of IGS stations are obtained using an independently developed software under generalized network adjustment models with coordinate patterns. From the time series, non-linear motions are found. With spectral analysis method, the variation frequency (annual period and semi-annual period) of the site velocity is found. Moreover, the empirical model of the velocity variation of the station has been established by regression analysis method based on the weekly solution coordinate series of the station. With respect to the velocity of the IGS tracking station, it was better to model the variation periodically or to give a velocity periodically using a piece-wise linear function rather than a linear variable to estimate its bias.展开更多
Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson mod...Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a two-phase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes.展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
The plastic deformation of semiconductors,a process critical to their mechanical and electronic properties,involves various mechanisms such as dislocation motion and phase transition.Here,we systematically examined th...The plastic deformation of semiconductors,a process critical to their mechanical and electronic properties,involves various mechanisms such as dislocation motion and phase transition.Here,we systematically examined the temperature-dependent Peierls stress for 30°and 90°partial dislocations in cadmium telluride(CdTe),using a combination of molecular statics and molecular dynamics simulations with a machine-learning force field,as well as density functional theory simulations.Our findings reveal that the 0 K Peierls stresses for these partial dislocations in CdTe are relatively low,ranging from 0.52 GPa to 1.46 GPa,due to its significant ionic bonding characteristics.Notably,in the CdTe system containing either a 30°Cd-core or 90°Te-core partial dislocation,a phase transition from the zinc-blende phase to theβ-Sn-like phase is favored over dislocation motion.This suggests a competitive relationship between these two mechanisms,driven by the bonding characteristics within the dislocation core and the relatively low phase transition stress of∼1.00 GPa.Furthermore,we observed a general trend wherein the Peierls stress for partial dislocations in CdTe exhibits a temperature dependence,which decreases with increasing temperature,becoming lower than the phase transition stress at elevated temperatures.Consequently,the dominant deformation mechanism in CdTe shifts from solid-state phase transition at low temperatures to dislocation motion at high temperatures.This investigation uncovers a compelling interplay between dislocation motion and phase transition in the plastic deformation of CdTe,offering profound insights into the mechanical behavior and electronic performance of CdTe and other II-VI semiconductors.展开更多
Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing int...Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.展开更多
With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, ...With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.展开更多
Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frame...Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.展开更多
In this study,we present a unified sparsity-driven framework that significantly enhances motion deblurring performance by integrating two key components:a custom-designed dataset and a low-rank module(LRM).This framew...In this study,we present a unified sparsity-driven framework that significantly enhances motion deblurring performance by integrating two key components:a custom-designed dataset and a low-rank module(LRM).This framework leverages the inherent sparsity of per-pixel blur kernels to bolster both deblurring accuracy and model interpretability.Firstly,we propose an adaptive-basis decomposition-based deblurring(ADD)approach,which constructs a tailored training dataset to enhance the generalization capacity of the deblurring network.The ADD framework adaptively decomposes motion blur into sparse basis elements,effectively addressing the intricacies associated with non-uniform blurs.Secondly,an LRM is proposed to improve the interpretability of deblurring models as a plug-and-play module,primarily designed to identify and harness the intrinsic sparse features in sharp images.A series of ablation studies have been conducted to substantiate the synergistic advantages of combining the proposed ADD with the LRM for overall improvement in deblurring efficacy.Subsequently,we empirically demonstrate through rigorous experimentation that incorporating the LRM into an existing Uformer network leads to substantial enhancement in reconstruction performance.This integration yields a sparsity-guided low-rank network(SGLRN).Operating under the overarching principle of sparsity,SGLRN consistently outperforms state-of-the-art methods across multiple standard deblurring benchmarks.Comprehensive experimental results,assessed through quantitative metrics and qualitative visual evaluations,provide compelling evidence of its effectiveness.The overall deblurring results are available at Google Drive.展开更多
This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial...This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.展开更多
Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force an...Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.展开更多
Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency...Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.展开更多
This review summarizes the clinical applications and mechanisms of action of motion-style acupuncture(MSAT)in rehabilitation medicine.Patients are required to perform active or passive movements while the acupuncture ...This review summarizes the clinical applications and mechanisms of action of motion-style acupuncture(MSAT)in rehabilitation medicine.Patients are required to perform active or passive movements while the acupuncture needles are inserted.Owing to its effectiveness,MSAT is progressively applied in clinical settings,including musculoskeletal and neurological diseases.Acupuncture and exercise generate syner-gistic effects through interactive mechanisms.From the perspective of the Traditional Chinese Medicine(TCM)theory,needling with movement can trigger the propagation of the needling sensation,thereby enhancing its efficacy in dredging meridians and regulating qi-blood circulation.In modern medicine,these mechanisms include neural inhibition,ischemia/reperfusion,and fascial stimulation propagation.Although the clinical applications and mechanism research of MSAT in rehabilitation medicine have ad-vanced,the mechanisms of MSAT in treating various diseases and the scope of applicable diseases war-rant deeper exploration.This will provide novel therapeutic strategies for clinical applications,thereby advancing the integration and application of TCM therapies with exercise-based interventions.展开更多
The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the l...The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the launch and recovery of AUV and elucidate its kinematic characteristics.Initially,based on the principles of deployment and retraction for AUV capture movements,a design scheme for a novel foldable and deployable capture mechanism is proposed.Subsequently,a detailed analysis of the Degrees of Freedom(DoFs)for enveloping and grasping movements is conducted according to screw theory.Additionally,the structural design of the actuation units for the capture mechanism is thoroughly discussed.Motion screw topology diagram is utilized to construct the kinematic model.On this basis,kinematic simulation verification of the capture mechanism is performed.The theoretical analysis revealed that the DoF for enveloping and grasping movements are 6 and 2,respectively.By appropriately configuring the actuation mechanism,enveloping and grasping movements can be achieved with a single actuation.The displacement and velocity curves of the capture mechanism were smooth,with no interference occurring.Vibration test results validate the reliability of the capture mechanism.The research work provides a valuable reference for the development of novel capture equipment for AUVs.展开更多
Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkl...Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.展开更多
This article centers on The Call of the Wild,an English novel by American author Jack London,alongside two Chinese translations by Dajie Liu and Menglin Zhang,and Rongyue Liu.Seventy sentences containing motion events...This article centers on The Call of the Wild,an English novel by American author Jack London,alongside two Chinese translations by Dajie Liu and Menglin Zhang,and Rongyue Liu.Seventy sentences containing motion events and their corresponding translations were randomly selected for analysis.The study focuses on the primary elements of motion events-manner,path,and ground-and examines their Chinese translations through the lens of Skopos theory.Skopos theory emphasizes whether translators can adopt appropriate translation strategies according to various contextual factors during the translation process.Compared to verb-framed languages,satellite-framed languages possess a richer vocabulary for manner verbs,express more detailed manner information,use more satellite words to indicate paths,and incorporate more background information.Verb-framed languages,by contrast,typically express manner information only when necessary and tend to include less background information.The analysis reveals that both Chinese translations embody the core principle of Skopos theory:translation strategies are determined by their purpose.To fulfill the novel’s translation objectives,the translators adeptly adjust their strategies for motion event components based on different contextual needs.It is noted that the Chinese translations do not fully retain the characteristics of English as a typical satellite-framed language.This observation aligns with Skopos theory’s purpose-oriented approach,which prioritizes translation goals over strict adherence to source text characteristics.展开更多
Shape memory alloy(SMA)bars are currently preferred over elastomeric seismic isolators due to the elimination of degradation within effective damping and stiffness factors during the cyclic response of an isolation sy...Shape memory alloy(SMA)bars are currently preferred over elastomeric seismic isolators due to the elimination of degradation within effective damping and stiffness factors during the cyclic response of an isolation system.These bars could also be used to prevent the functionality of the isolator units from failing due to large deformations.This study aims to investigate the performance of a high damping rubber bearing(HDRB)isolator that is combined with two different types of SMA bars,i.e.,Nickel-Titanium(Ni-Ti)and Copper-Aluminum-Beryllium(Cu-Al-Be),subjected to near-fault ground motions that are characterized with forward directivity and fling step effects.To achieve this objective,a self-centering material with flag-shape,force-deformation hysteresis was utilized to simulate the behavior of SMA bars in OpenSees.A single degree of freedom(SDOF)system representing an isolated one-story shear building was developed to conduct nonlinear analysis under selected ground motions.The SMA bars were introduced as an X-shape within the model and were connected diagonally to the top and bottom of the isolator.Results showed that the HDRB system’s hysteretic response under near-fault ground accelerations experiences significant degradation,especially when near-fault motions involve the fling step effect.It was demonstrated that SMA bars effectively reduce large displacement observed in HDRB systems under near-fault earthquakes.Comparing the results of the base-isolated HDRB and SMA-HDRB subjected to selected ground motions demonstrated that maximum displacement was found to be significantly reduced by an average of 79%when SMA bars were used.Incorporating SMA bars with a larger diameter significantly improves the efficiency of SMA HDRB systems,and a reduction in maximum displacements is more pronounced for fling step,near-fault ground motions.展开更多
Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot application...Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.展开更多
Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt e...Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics.展开更多
基金Supported by the National 863 Program of China (No.2006AA12Z323), the National 973 Program of China (No.2006CB701301), the National Natural Science Foundation of China (No.40774008) and the Open Research Fund Program of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, China (No.06-10).
文摘With the daily SINEX files of the IGS, the time series of IGS stations are obtained using an independently developed software under generalized network adjustment models with coordinate patterns. From the time series, non-linear motions are found. With spectral analysis method, the variation frequency (annual period and semi-annual period) of the site velocity is found. Moreover, the empirical model of the velocity variation of the station has been established by regression analysis method based on the weekly solution coordinate series of the station. With respect to the velocity of the IGS tracking station, it was better to model the variation periodically or to give a velocity periodically using a piece-wise linear function rather than a linear variable to estimate its bias.
基金funded by Universiti Teknikal Malaysia Melaka and Ministry of Higher Education(MoHE)Malaysia,grant number FRGS/1/2024/FTKM/F00586.
文摘Motivated by the widespread applications of nanofluids,a nanofluid model is proposed which focuses on uniform magnetohydrodynamic(MHD)boundary layer flow over a non-linear stretching sheet,incorporating the Casson model for blood-based nanofluid while accounting for viscous and Ohmic dissipation effects under the cases of Constant Surface Temperature(CST)and Prescribed Surface Temperature(PST).The study employs a two-phase model for the nanofluid,coupled with thermophoresis and Brownian motion,to analyze the effects of key fluid parameters such as thermophoresis,Brownian motion,slip velocity,Schmidt number,Eckert number,magnetic parameter,and non-linear stretching parameter on the velocity,concentration,and temperature profiles of the nanofluid.The proposed model is novel as it simultaneously considers the impact of thermophoresis and Brownian motion,along with Ohmic and viscous dissipation effects,in both CST and PST scenarios for blood-based Casson nanofluid.The numerical technique built into MATLAB’s bvp4c module is utilized to solve the governing system of coupled differential equations,revealing that the concentration of nanoparticles decreases with increasing thermophoresis and Brownian motion parameters while the temperature of the nanofluid increases.Additionally,a higher Eckert number is found to reduce the nanofluid temperature.A comparative analysis between CST and PST scenarios is also undertaken,which highlights the significant influence of these factors on the fluid’s characteristics.The findings have potential applications in biomedical processes to enhance fluid velocity and heat transfer rates,ultimately improving patient outcomes.
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
基金supported by the National Science Foundation(No.CMMI-2019459).
文摘The plastic deformation of semiconductors,a process critical to their mechanical and electronic properties,involves various mechanisms such as dislocation motion and phase transition.Here,we systematically examined the temperature-dependent Peierls stress for 30°and 90°partial dislocations in cadmium telluride(CdTe),using a combination of molecular statics and molecular dynamics simulations with a machine-learning force field,as well as density functional theory simulations.Our findings reveal that the 0 K Peierls stresses for these partial dislocations in CdTe are relatively low,ranging from 0.52 GPa to 1.46 GPa,due to its significant ionic bonding characteristics.Notably,in the CdTe system containing either a 30°Cd-core or 90°Te-core partial dislocation,a phase transition from the zinc-blende phase to theβ-Sn-like phase is favored over dislocation motion.This suggests a competitive relationship between these two mechanisms,driven by the bonding characteristics within the dislocation core and the relatively low phase transition stress of∼1.00 GPa.Furthermore,we observed a general trend wherein the Peierls stress for partial dislocations in CdTe exhibits a temperature dependence,which decreases with increasing temperature,becoming lower than the phase transition stress at elevated temperatures.Consequently,the dominant deformation mechanism in CdTe shifts from solid-state phase transition at low temperatures to dislocation motion at high temperatures.This investigation uncovers a compelling interplay between dislocation motion and phase transition in the plastic deformation of CdTe,offering profound insights into the mechanical behavior and electronic performance of CdTe and other II-VI semiconductors.
基金Shenzhen Science and Technology Programme,Grant/Award Number:JCYJ202308071208000012023 Shenzhen sustainable supporting funds for colleges and universities,Grant/Award Number:20231121165240001Guangdong Provincial Key Laboratory of Ultra High Definition Immersive Media Technology,Grant/Award Number:2024B1212010006。
文摘Internal learning-based video inpainting methods have shown promising results by exploiting the intrinsic properties of the video to fill in the missing region without external dataset supervision.However,existing internal learning-based video inpainting methods would produce inconsistent structures or blurry textures due to the insufficient utilisation of motion priors within the video sequence.In this paper,the authors propose a new internal learning-based video inpainting model called appearance consistency and motion coherence network(ACMC-Net),which can not only learn the recurrence of appearance prior but can also capture motion coherence prior to improve the quality of the inpainting results.In ACMC-Net,a transformer-based appearance network is developed to capture global context information within the video frame for representing appearance consistency accurately.Additionally,a novel motion coherence learning scheme is proposed to learn the motion prior in a video sequence effectively.Finally,the learnt internal appearance consistency and motion coherence are implicitly propagated to the missing regions to achieve inpainting well.Extensive experiments conducted on the DAVIS dataset show that the proposed model obtains the superior performance in terms of quantitative measurements and produces more visually plausible results compared with the state-of-the-art methods.
基金supported by the National Natural Science Foundation of China(Nos.52373093 and 12072325)the Outstanding Youth Fund of Henan Province(No.242300421062)+1 种基金National Key R&D Program of China(No.2019YFA0706802)the 111 project(No.D18023).
文摘With the rapid development of wearable electronic skin technology, flexible strain sensors have shown great application prospects in the fields of human motion and physiological signal detection, medical diagnostics, and human-computer interaction owing to their outstanding sensing performance. This paper reports a strain sensor with synergistic conductive network, consisting of stable carbon nanotube dispersion (CNT) layer and brittle MXene layer by dip-coating and electrostatic self-assembly method, and breathable three-dimensional (3D) flexible substrate of thermoplastic polyurethane (TPU) fibrous membrane prepared through electrospinning technology. The MXene/CNT@PDA-TPU (MC@p-TPU) flexible strain sensor had excellent air permeability, wide operating range (0–450 %), high sensitivity (Gauge Factor, GFmax = 8089.7), ultra-low detection limit (0.05 %), rapid response and recovery times (40 ms/60 ms), and excellent cycle stability and durability (10,000 cycles). Given its superior strain sensing capabilities, this sensor can be applied in physiological signals detection, human motion pattern recognition, and driving exoskeleton robots. In addition, MC@p-TPU fibrous membrane also exhibited excellent photothermal conversion performance and can be used as a wearable photo-heater, which has far-reaching application potential in the photothermal therapy of human joint diseases.
基金supported by the National Natural Science Foundation of China(Grant No.72161034).
文摘Human motion modeling is a core technology in computer animation,game development,and humancomputer interaction.In particular,generating natural and coherent in-between motion using only the initial and terminal frames remains a fundamental yet unresolved challenge.Existing methods typically rely on dense keyframe inputs or complex prior structures,making it difficult to balance motion quality and plausibility under conditions such as sparse constraints,long-term dependencies,and diverse motion styles.To address this,we propose a motion generation framework based on a frequency-domain diffusion model,which aims to better model complex motion distributions and enhance generation stability under sparse conditions.Our method maps motion sequences to the frequency domain via the Discrete Cosine Transform(DCT),enabling more effective modeling of low-frequency motion structures while suppressing high-frequency noise.A denoising network based on self-attention is introduced to capture long-range temporal dependencies and improve global structural awareness.Additionally,a multi-objective loss function is employed to jointly optimize motion smoothness,pose diversity,and anatomical consistency,enhancing the realism and physical plausibility of the generated sequences.Comparative experiments on the Human3.6M and LaFAN1 datasets demonstrate that our method outperforms state-of-the-art approaches across multiple performance metrics,showing stronger capabilities in generating intermediate motion frames.This research offers a new perspective and methodology for human motion generation and holds promise for applications in character animation,game development,and virtual interaction.
基金supported by the National Natural Science Foundation of China(No.62206143)the Key Research and Development and Promotion Special Project in Henan Province(Nos.222102210141 and 232102211015)。
文摘In this study,we present a unified sparsity-driven framework that significantly enhances motion deblurring performance by integrating two key components:a custom-designed dataset and a low-rank module(LRM).This framework leverages the inherent sparsity of per-pixel blur kernels to bolster both deblurring accuracy and model interpretability.Firstly,we propose an adaptive-basis decomposition-based deblurring(ADD)approach,which constructs a tailored training dataset to enhance the generalization capacity of the deblurring network.The ADD framework adaptively decomposes motion blur into sparse basis elements,effectively addressing the intricacies associated with non-uniform blurs.Secondly,an LRM is proposed to improve the interpretability of deblurring models as a plug-and-play module,primarily designed to identify and harness the intrinsic sparse features in sharp images.A series of ablation studies have been conducted to substantiate the synergistic advantages of combining the proposed ADD with the LRM for overall improvement in deblurring efficacy.Subsequently,we empirically demonstrate through rigorous experimentation that incorporating the LRM into an existing Uformer network leads to substantial enhancement in reconstruction performance.This integration yields a sparsity-guided low-rank network(SGLRN).Operating under the overarching principle of sparsity,SGLRN consistently outperforms state-of-the-art methods across multiple standard deblurring benchmarks.Comprehensive experimental results,assessed through quantitative metrics and qualitative visual evaluations,provide compelling evidence of its effectiveness.The overall deblurring results are available at Google Drive.
文摘This opinion article discusses the original research work of Yünkül et al.(the Authors)published in the Journal of Mountain Science 21(9):3108–3122.Employing non-linear regression,fuzzy logic and artificial neural network modeling techniques,the Authors interrogated a large database assembled from the existing research literature to assess the performance of twelve equation rules in predicting the undrained shear strength(s_(u))mobilized for remolded fine-grained soils at different values of liquidity index(I_(L))and water content ratio.Based on their analyses,the Authors proposed a simple and reportedly reliable correlation(i.e.,Eq.9 in their paper)for predicting s_(u) over the I_(L) range of 0.15 to 3.00.This article describes various shortcomings in the Authors’assembled database(including potentially anomalous data and covering an excessively wide I_(L) range in relation to routine geotechnical and transportation engineering applications)and their proposed s_(u)=f(I_(L))correlation.Contrary to the Authors’assertions,their proposed correlation is not reliable for fine-grained soils with consistencies in the general firm to stiff range(i.e.,for 0.15<I_(L)<0.40),increasingly overestimating s_(u) for reducing I_(L),and eventually predicting s_(u)→+∞for I_(L)→0.15+(while producing mathematically undefined s_(u) for I_(L)<0.15),thus rendering their correlation unconservative and potentially leading to unsafe geotechnical designs.Exponential or regular-power type s_(u)=f(I_(L))models are more s_(u)itable when developing correlations that are applicable over the full plastic range(of 0<I_(L)<1),thereby providing reasonably conservative s_(u) predictions for use in the preliminary design for routine geotechnical engineering applications.
基金Supported by National Natural Science Foundation of China(Grant No.11872033)Beijing Municipal Natural Science Foundation(Grant No.3172017)。
文摘Many experiments have supported the contact models,such as the GW and MB models,but the majority of previous validations have been performed under light loads,resulting in a linear relationship between normal force and contact area.However,the real contact area fraction should never equal one;there must be a limit smaller than the apparent area,implying that the real contact area cannot increase linearly indefinitely.In this paper,the real contact area between two polymethylmethacrylate(PMMA)blocks under heavy load is measured using the total reflection method,and the contact area is analyzed using the image processing method.The results show that the real contact area increases with normal load linearly in light loads but non-linearly in heavy loads;the number of contact spots increases with load linearly in light loads but also non-linearly in heavy loads,synchronous with the change in the real contact area.The GW,MB,and Zhao,Maietta,and Chang(ZMC)models were used to predict the experiment results,but none of them predicted the non-linear stage.A revised GW model based on the bulk deformation hypothesis performs better in predicting the non-linear stage.The study’s findings can be applied to PMMA or other similar materials,and they can serve as a useful reference for future research on the contact mechanisms of other materials.
基金supported by The Key Science and Technology Plan Project of Jinhua City,China:2023-3-084,2023-2-011Zhejiang Provincial"Revealing the list and taking command"Project of China KYH06Y22349Open Fund Project of Key Laboratory of CNC Equipment reliability,Ministry of Education JLU-cncr-202407.
文摘Piezoelectric actuators are widely utilized in positioning systems to realize nano-scale resolution. However, the backward motion always generates for some piezoelectric actuators, which reduces the working efficiency. Bionic motions have already been employed in the field of piezoelectric actuators to realize better performance. By imitating the movement form of seals, seal type piezoelectric actuator is capable to realize large operating strokes easily. Nevertheless, the conventional seal type piezoelectric actuator has a complicated structure and control system, which limits further applications. Hence, an improved bionic piezoelectric actuator is proposed to realize a long motion stroke and eliminate backward movement with a simplified structure and control method in this study. The composition and motion principle of the designed actuator are discussed, and the performance is investigated with simulations and experiments. Results confirm that the presented actuator effectively realizes the linear movement that has a large working stroke stably without backward motion. The smallest stepping displacement ΔL is 0.2 μm under 1 Hz and 50 V. The largest motion speed is 900 μm/s with 900 Hz and 120 V. The largest vertical and horizontal load are 250 g and 12 g, respectively. This work shows that the improved bionic piezoelectric actuator is feasible for eliminating backward motion and has a great working ability.
基金Supported by Winter Sports Management Center of General Administration of Sport of China:0773-2441GNOEFWGK4888。
文摘This review summarizes the clinical applications and mechanisms of action of motion-style acupuncture(MSAT)in rehabilitation medicine.Patients are required to perform active or passive movements while the acupuncture needles are inserted.Owing to its effectiveness,MSAT is progressively applied in clinical settings,including musculoskeletal and neurological diseases.Acupuncture and exercise generate syner-gistic effects through interactive mechanisms.From the perspective of the Traditional Chinese Medicine(TCM)theory,needling with movement can trigger the propagation of the needling sensation,thereby enhancing its efficacy in dredging meridians and regulating qi-blood circulation.In modern medicine,these mechanisms include neural inhibition,ischemia/reperfusion,and fascial stimulation propagation.Although the clinical applications and mechanism research of MSAT in rehabilitation medicine have ad-vanced,the mechanisms of MSAT in treating various diseases and the scope of applicable diseases war-rant deeper exploration.This will provide novel therapeutic strategies for clinical applications,thereby advancing the integration and application of TCM therapies with exercise-based interventions.
基金Supported by Jiangsu Provincial Natural Science Foundation(Grant No.BK20220649)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.23KJB460010)+2 种基金Provincial Key Laboratory of High-end Deepsea Machinery Equipment(Grant Nos.SYH2024003 and SYH2025001)the Jiangsu Provincial Key R&D Project(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX25_2526).
文摘The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the launch and recovery of AUV and elucidate its kinematic characteristics.Initially,based on the principles of deployment and retraction for AUV capture movements,a design scheme for a novel foldable and deployable capture mechanism is proposed.Subsequently,a detailed analysis of the Degrees of Freedom(DoFs)for enveloping and grasping movements is conducted according to screw theory.Additionally,the structural design of the actuation units for the capture mechanism is thoroughly discussed.Motion screw topology diagram is utilized to construct the kinematic model.On this basis,kinematic simulation verification of the capture mechanism is performed.The theoretical analysis revealed that the DoF for enveloping and grasping movements are 6 and 2,respectively.By appropriately configuring the actuation mechanism,enveloping and grasping movements can be achieved with a single actuation.The displacement and velocity curves of the capture mechanism were smooth,with no interference occurring.Vibration test results validate the reliability of the capture mechanism.The research work provides a valuable reference for the development of novel capture equipment for AUVs.
基金This work was supported by the Youth Project of Hunan Provincial Department of Education(Grant No.22B0334)the Bridge and Tunnel Engineering Innovation Project of Changsha University of Science&Technology(Grant No.11ZDXK11)and the Practical Innovation and Entrepreneurship Capacity Improvement Plan of Changsha University of Science and Technology(Grant No.CLSJCX23029).
文摘Organisms have evolved a strain limiting mechanism,reflected as a non-linear elastic constitutive,to prevent large deformations from threatening soft tissue integrity.Compared with linear elastic substrates,the wrinkle of films on non-linear elastic substrates has received less attention.In this article,a unique wrinkle evolution of the film-substrate system with a J-shaped non-linear stress-strain relation is reported.The result shows that a concave hexagonal array pattern is formed with the shrinkage strain of the film-substrate systems developing.As the interconnection of hexagonal arrays,a unit cell ridge network appears with properties such as chirality and helix.The subparagraph maze pattern formed with high compression is mainly composed of special single-cell ridge networks such as spiral single cores,chiral double cores,and combined multi-cores.This evolutionary model is highly consistent with the results of experiments,and it also predicts wrinkle morphology that has not yet been reported.These findings can serve as a novel explanation for the surface wrinkle of biological soft tissue,as well as provide references for the preparation of artificial biomaterials and programmable soft matter.
基金Humanities and Social Sciences Research Project of China’s Ministry of Education(23YJCZH242)Major Humanities and Social Sciences Research Projects in Zhejiang Higher Education Institutions(2024QN069)Hangzhou Collaborative Innovation Institute of Language Services,Hangzhou City University,China。
文摘This article centers on The Call of the Wild,an English novel by American author Jack London,alongside two Chinese translations by Dajie Liu and Menglin Zhang,and Rongyue Liu.Seventy sentences containing motion events and their corresponding translations were randomly selected for analysis.The study focuses on the primary elements of motion events-manner,path,and ground-and examines their Chinese translations through the lens of Skopos theory.Skopos theory emphasizes whether translators can adopt appropriate translation strategies according to various contextual factors during the translation process.Compared to verb-framed languages,satellite-framed languages possess a richer vocabulary for manner verbs,express more detailed manner information,use more satellite words to indicate paths,and incorporate more background information.Verb-framed languages,by contrast,typically express manner information only when necessary and tend to include less background information.The analysis reveals that both Chinese translations embody the core principle of Skopos theory:translation strategies are determined by their purpose.To fulfill the novel’s translation objectives,the translators adeptly adjust their strategies for motion event components based on different contextual needs.It is noted that the Chinese translations do not fully retain the characteristics of English as a typical satellite-framed language.This observation aligns with Skopos theory’s purpose-oriented approach,which prioritizes translation goals over strict adherence to source text characteristics.
基金Open Access funding enabled and organized by CAUL and its Member Institutions。
文摘Shape memory alloy(SMA)bars are currently preferred over elastomeric seismic isolators due to the elimination of degradation within effective damping and stiffness factors during the cyclic response of an isolation system.These bars could also be used to prevent the functionality of the isolator units from failing due to large deformations.This study aims to investigate the performance of a high damping rubber bearing(HDRB)isolator that is combined with two different types of SMA bars,i.e.,Nickel-Titanium(Ni-Ti)and Copper-Aluminum-Beryllium(Cu-Al-Be),subjected to near-fault ground motions that are characterized with forward directivity and fling step effects.To achieve this objective,a self-centering material with flag-shape,force-deformation hysteresis was utilized to simulate the behavior of SMA bars in OpenSees.A single degree of freedom(SDOF)system representing an isolated one-story shear building was developed to conduct nonlinear analysis under selected ground motions.The SMA bars were introduced as an X-shape within the model and were connected diagonally to the top and bottom of the isolator.Results showed that the HDRB system’s hysteretic response under near-fault ground accelerations experiences significant degradation,especially when near-fault motions involve the fling step effect.It was demonstrated that SMA bars effectively reduce large displacement observed in HDRB systems under near-fault earthquakes.Comparing the results of the base-isolated HDRB and SMA-HDRB subjected to selected ground motions demonstrated that maximum displacement was found to be significantly reduced by an average of 79%when SMA bars were used.Incorporating SMA bars with a larger diameter significantly improves the efficiency of SMA HDRB systems,and a reduction in maximum displacements is more pronounced for fling step,near-fault ground motions.
基金supported by National Science Foundation Grant No.2123824.
文摘Microrobots powered by an external magnetic field could be used for sophisticated medical applications such as cell treatment,micromanipulation,and noninvasive surgery inside the body.Untethered microrobot applications can benefit from haptic technology and telecommunication,enabling telemedical micro-manipulation.Users can manipulate the microrobots with haptic feedback by interacting with the robot operating system remotely in such applications.Artificially created haptic forces based on wirelessly transmitted data and model-based guidance can aid human operators with haptic sensations while manipulating microrobots.The system presented here includes a haptic device and a magnetic tweezer system linked together using a network-based teleoperation method with motion models in fluids.The magnetic microrobots can be controlled remotely,and the haptic interactions with the remote environment can be felt in real time.A time-domain passivity controller is applied to overcome network delay and ensure stability of communication.This study develops and tests a motion model for microrobots and evaluates two image-based 3D tracking algorithms to improve tracking accuracy in various Newtonian fluids.Additionally,it demonstrates that microrobots can group together to transport multiple larger objects,move through microfluidic channels for detailed tasks,and use a novel method for disassembly,greatly expanding their range of use in microscale operations.Remote medical treatment in multiple locations,remote delivery of medication without the need for physical penetration of the skin,and remotely controlled cell manipulations are some of the possible uses of the proposed technology.
基金funded by the Natural Science Basis Research Plan in Shaanxi Province of China(Program No.2023-JC-QN-0659)General Specialized Scientific Research Program of the Shaanxi Provincial Department of Education(Program 23JK0349).
文摘Legged robots have always been a focal point of research for scholars domestically and internationally.Compared to other types of robots,quadruped robots exhibit superior balance and stability,enabling them to adapt effectively to diverse environments and traverse rugged terrains.This makes them well-suited for applications such as search and rescue,exploration,and transportation,with strong environmental adaptability,high flexibility,and broad application prospects.This paper discusses the current state of research on quadruped robots in terms of development status,gait trajectory planning methods,motion control strategies,reinforcement learning applications,and control algorithm integration.It highlights advancements in modeling,optimization,control,and data-driven approaches.The study identifies the adoption of efficient gait planning algorithms,the integration of reinforcement learning-based control technologies,and data-driven methods as key directions for the development of quadruped robots.The aim is to provide theoretical references for researchers in the field of quadruped robotics.