In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hy...In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.展开更多
Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this...Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.展开更多
The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Consi...The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.展开更多
Regarding the rapid compensation of the influence of the Earth' s disturbing gravity field upon trajectory calculation,the key point lies in how to derive the analytical solutions to the partial derivatives of the st...Regarding the rapid compensation of the influence of the Earth' s disturbing gravity field upon trajectory calculation,the key point lies in how to derive the analytical solutions to the partial derivatives of the state of burnout point with respect to the launch data.In view of this,this paper mainly expounds on two issues:one is based on the approximate analytical solution to the motion equation for the vacuum flight section of a long-range rocket,deriving the analytical solutions to the partial derivatives of the state of burnout point with respect to the changing rate of the finalstage pitch program;the other is based on the initial positioning and orientation error propagation mechanism,proposing the analytical calculation formula for the partial derivatives of the state of burnout point with respect to the launch azimuth.The calculation results of correction data are simulated and verified under different circumstances.The simulation results are as follows:(1) the accuracy of approximation between the analytical solutions and the results attained via the difference method is higher than 90%,and the ratio of calculation time between them is lower than 0.2%,thus demonstrating the accuracy of calculation of data corrections and advantages in calculation speed;(2) after the analytical solutions are compensated,the longitudinal landing deviation of the rocket is less than 20 m and the lateral landing deviation of the rocket is less than 10 m,demonstrating that the corrected data can meet the requirements for the hit accuracy of a long-range rocket.展开更多
In the context of climate change,countries in West Africa are faced with recurrent flooding with catastrophic consequences,that makes it imperative to have access to rainfall information on fine spatial and temporal s...In the context of climate change,countries in West Africa are faced with recurrent flooding with catastrophic consequences,that makes it imperative to have access to rainfall information on fine spatial and temporal scales for better monitoring and prediction of these phenomena,as could be provided by weather radars.Based on an extensive archive of data from the X-band polarimetric radar and rain gauges observations gathered during the intensive AMMA campaigns in 2006–2007 and the Megha-Tropiques satellite measurement validation programme in 2010 in West Africa,we(i)simulated jointly realistic data for polarimetric radar variables and rain intensity using copula,and(ii)assessed rain rate estimation methods based on neural network(NN)inversion techniques and non-linearly calibrated parametric algorithms.The assessment of rainfall rate retrieval by these estimators is carried out using the part of the observations database not employed for calibration steps.The multiparametric algorithms R(ZH,K_(DP))and R(Z_(DR),K_(DP))perform better than R(ZH,Z_(DR))and R(ZH,Z_(DR),K_(DP)),especially since they are calibrated using copulas with upper tail dependencies,with KGE ranging in 0.68–0.75 and 0.79–0.82,respectively versus ranges of 0.40–0.64 and 0.20–0.51,for the two latter estimators.The neural network-based estimators RNN(Z_(DR),K_(DP))and RNN(ZH,K_(DP)),show KGE score characteristics comparable to those obtained from the best parametric relations,specifically optimized for the synthetic copula-based dataset.However,the neural network-based estimators were shown to be more robust when applied to a specific rainfall event.More specifically,neural network-based estimators trained on synthetic data are sensitive to the copulas’ability to capture the dependence between the variables of interest over the entire distribution of joint values.This leads to a near-cancellation of sensitivity to variability in the raindrop size distribution,as shown the coefficients of correlation near 1,especially for RNN(Z_(DR),K_(DP)),and for less extent RNN(Z_(H),K_(DP)).展开更多
基金supported by the National GNSS Research Center Program of the Defense Acquisition Program Administration and Agency for Defense Developmentthe Ministry of Science and ICT of the Republic of Korea through the Space Core Technology Development Program (No. NRF2018M1A3A3A02065722)
文摘In this paper, a cardinality compensation method based on Information-weighted Consensus Filter(ICF) using data clustering is proposed in order to accurately estimate the cardinality of the Cardinalized Probability Hypothesis Density(CPHD) filter. Although the joint propagation of the intensity and the cardinality distribution in the CPHD filter process allows for more reliable estimation of the cardinality(target number) than the PHD filter, tracking loss may occur when noise and clutter are high in the measurements in a practical situation. For that reason, the cardinality compensation process is included in the CPHD filter, which is based on information fusion step using estimated cardinality obtained from the CPHD filter and measured cardinality obtained through data clustering. Here, the ICF is used for information fusion. To verify the performance of the proposed method, simulations were carried out and it was confirmed that the tracking performance of the multi-target was improved because the cardinality was estimated more accurately as compared to the existing techniques.
基金the financial support provided by the National Natural Science Foundation of China(11472267 and 11372182)the National Basic Research Program of China(2012CB937504)
文摘Although the structured light system that uses digital fringe projection has been widely implemented in three-dimensional surface profile measurement, the measurement system is susceptible to non-linear error. In this work, we propose a convenient look-up-table-based (LUT-based) method to compensate for the non-linear error in captured fringe patterns. Without extra calibration, this LUT-based method completely utilizes the captured fringe pattern by recording the full-field differences. Then, a phase compensation map is established to revise the measured phase. Experimental results demonstrate that this method works effectively.
基金This research is supported by the National Science and Technology Major Project of China(No.2011ZX05024-001-03)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2021JQ-588)Innovation Fund for graduate students of Xi’an Shiyou University(No.YCS17111017).
文摘The low-pass fi ltering eff ect of the Earth results in the absorption and attenuation of the high-frequency components of seismic signals by the stratum during propagation.Hence,seismic data have low resolution.Considering the limitations of traditional high-frequency compensation methods,this paper presents a new method based on adaptive generalized S transform.This method is based on the study of frequency spectrum attenuation law of seismic signals,and the Gauss window function of adaptive generalized S transform is used to fi t the attenuation trend of seismic signals to seek the optimal Gauss window function.The amplitude spectrum compensation function constructed using the optimal Gauss window function is used to modify the time-frequency spectrum of the adaptive generalized S transform of seismic signals and reconstruct seismic signals to compensate for high-frequency attenuation.Practical data processing results show that the method can compensate for the high-frequency components that are absorbed and attenuated by the stratum,thereby eff ectively improving the resolution and quality of seismic data.
文摘Regarding the rapid compensation of the influence of the Earth' s disturbing gravity field upon trajectory calculation,the key point lies in how to derive the analytical solutions to the partial derivatives of the state of burnout point with respect to the launch data.In view of this,this paper mainly expounds on two issues:one is based on the approximate analytical solution to the motion equation for the vacuum flight section of a long-range rocket,deriving the analytical solutions to the partial derivatives of the state of burnout point with respect to the changing rate of the finalstage pitch program;the other is based on the initial positioning and orientation error propagation mechanism,proposing the analytical calculation formula for the partial derivatives of the state of burnout point with respect to the launch azimuth.The calculation results of correction data are simulated and verified under different circumstances.The simulation results are as follows:(1) the accuracy of approximation between the analytical solutions and the results attained via the difference method is higher than 90%,and the ratio of calculation time between them is lower than 0.2%,thus demonstrating the accuracy of calculation of data corrections and advantages in calculation speed;(2) after the analytical solutions are compensated,the longitudinal landing deviation of the rocket is less than 20 m and the lateral landing deviation of the rocket is less than 10 m,demonstrating that the corrected data can meet the requirements for the hit accuracy of a long-range rocket.
文摘In the context of climate change,countries in West Africa are faced with recurrent flooding with catastrophic consequences,that makes it imperative to have access to rainfall information on fine spatial and temporal scales for better monitoring and prediction of these phenomena,as could be provided by weather radars.Based on an extensive archive of data from the X-band polarimetric radar and rain gauges observations gathered during the intensive AMMA campaigns in 2006–2007 and the Megha-Tropiques satellite measurement validation programme in 2010 in West Africa,we(i)simulated jointly realistic data for polarimetric radar variables and rain intensity using copula,and(ii)assessed rain rate estimation methods based on neural network(NN)inversion techniques and non-linearly calibrated parametric algorithms.The assessment of rainfall rate retrieval by these estimators is carried out using the part of the observations database not employed for calibration steps.The multiparametric algorithms R(ZH,K_(DP))and R(Z_(DR),K_(DP))perform better than R(ZH,Z_(DR))and R(ZH,Z_(DR),K_(DP)),especially since they are calibrated using copulas with upper tail dependencies,with KGE ranging in 0.68–0.75 and 0.79–0.82,respectively versus ranges of 0.40–0.64 and 0.20–0.51,for the two latter estimators.The neural network-based estimators RNN(Z_(DR),K_(DP))and RNN(ZH,K_(DP)),show KGE score characteristics comparable to those obtained from the best parametric relations,specifically optimized for the synthetic copula-based dataset.However,the neural network-based estimators were shown to be more robust when applied to a specific rainfall event.More specifically,neural network-based estimators trained on synthetic data are sensitive to the copulas’ability to capture the dependence between the variables of interest over the entire distribution of joint values.This leads to a near-cancellation of sensitivity to variability in the raindrop size distribution,as shown the coefficients of correlation near 1,especially for RNN(Z_(DR),K_(DP)),and for less extent RNN(Z_(H),K_(DP)).