BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes i...BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.展开更多
Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt pro...Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.展开更多
As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and am...As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and amplifying the spread of green behavior across society. To this end, a novel three-layer model in multilayer networks is proposed. In the novel model, the information layer describes green information spreading, the physical contact layer depicts green behavior propagation, and policy regulation is symbolized by an isolated node beneath the two layers. Then, we deduce the green behavior threshold for the three-layer model using the microscopic Markov chain approach. Moreover, subject to some individuals who are more likely to influence others or become green nodes and the limitations of the capacity of policy regulation, an optimal scheme is given that could optimize policy interventions to most effectively prompt green behavior.Subsequently, simulations are performed to validate the preciseness and theoretical results of the new model. It reveals that policy regulation can prompt the prevalence and outbreak of green behavior. Then, the green behavior is more likely to spread and be prevalent in the SF network than in the ER network. Additionally, optimal allocation is highly successful in facilitating the dissemination of green behavior. In practice, the optimal allocation strategy could prioritize interventions at critical nodes or regions, such as highly connected urban areas, where the impact of green behavior promotion would be most significant.展开更多
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f...In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.展开更多
Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between inf...Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.展开更多
Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vul...Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.展开更多
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al...In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.展开更多
This paper examines the travel behaviors of hand-foot-and-mouth disease(HFMD)patients in Nanchang City in central China.Based on the HFMD patients’hospital visitation data from the Center of Disease Control(CDC)of Na...This paper examines the travel behaviors of hand-foot-and-mouth disease(HFMD)patients in Nanchang City in central China.Based on the HFMD patients’hospital visitation data from the Center of Disease Control(CDC)of Nanchang in 2018,a spatial network of patient-to-hospital trip flows is constructed.A Geographic Information Systems(GIS)automated network community detec-tion method,termed‘ScLeiden’,is utilized to delineate the study area into six hospital service areas(HSAs)to represent distinctive health care markets.Patients’travel patterns across these HSAs are compared to highlight the geographic disparity.In two HSAs anchored by major hospitals in the regions,the volume of patients increased up to a travel range and then declined,and thus formed a single peak in the trip volume distribution curve across travel time.Each of the remaining four HSAs exhibited two or more peaks in their trip volume distribution curves.The patterns reflected the split choices of patients for the largest Children Hospital in the region,the second-tier county hospital,or others,which were likely to be stratified by their economic affordability,transportation means,and possible health literacy.The study provides valuable insights into the delineation of HSAs and the unique patients’travel behaviors in China.展开更多
Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand p...Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care.展开更多
A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the paramet...A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.展开更多
The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related in...The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.展开更多
In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behav...In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring.展开更多
Current constitutive theories face challenges when predicting the extremely large deformation and fracture of hydrogels,which calls for the demands to reveal the fundamental mechanism of the various mechanical behavio...Current constitutive theories face challenges when predicting the extremely large deformation and fracture of hydrogels,which calls for the demands to reveal the fundamental mechanism of the various mechanical behaviors of hydrogels from bottom up.Proper hydrogel network model provides a better approach to bridge the gap between the micro-structure and the macroscopic mechanical responses.This work summarizes the theoretical and numerical researches on the hydrogel network models,aiming to provide new insights into the effect of microstructure on the swelling-deswelling process,hyperelasticity,viscoelasticity and fracture of hydrogels.Hydrogel network models are divided into full-atom network models,realistic network models and abstract network models.Full-atom network models have detailed atomic structure but small size.Realistic network models with different coarse-graining degree have large model size to explain the swelling-deswelling process,hyperelasticity and viscoelasticity.Abstract network models abstract polymer chains into analytical interactions,leading to the great leap of model size.It shows advantages to reproduce the crack initiation and propagation in hydrogels by simulating chain scission.Further research directions on the network modeling are suggested.We hope this work can help integrate the merits of network modeling methods and continuum mechanics to capture the various mechanical behaviors of hydrogels.展开更多
In order to construct the trusted network and realize the trust of network behavior,a new multi-dimensional behavior measurement model based on prediction and control is presented.By using behavior predictive equation...In order to construct the trusted network and realize the trust of network behavior,a new multi-dimensional behavior measurement model based on prediction and control is presented.By using behavior predictive equation,individual similarity function,group similarity function,direct trust assessment function,and generalized predictive control,this model can guarantee the trust of an end user and users in its network.Compared with traditional measurement model,the model considers different characteristics of various networks.The trusted measurement policies established according to different network environments have better adaptability.By constructing trusted group,the threats to trusted group will be reduced greatly.Utilizing trusted group to restrict individuals in network can ensure the fault tolerance of trustworthiness of trusted individuals and group.The simulation shows that this scheme can support behavior measurement more efficiently than traditional ones and the model resists viruses and Trojans more efficiently than older ones.展开更多
It is generally accepted that herding behavior and overconfidence behavior are unrelated or even mutually exclusive.However,these behaviors can both lead to some similar market anomalies,such as excessive trading volu...It is generally accepted that herding behavior and overconfidence behavior are unrelated or even mutually exclusive.However,these behaviors can both lead to some similar market anomalies,such as excessive trading volume and volatility in the stock market.Due to the limitation of traditional time series analysis,we try to study whether there exists network relevance between the investor’s herding behavior and overconfidence behavior based on the complex network method.Since the investor’s herding behavior is based on market trends and overconfidence behavior is based on past performance,we convert the time series data of market trends into a market network and the time series data of the investor’s past judgments into an investor network.Then,we update these networks as new information arrives at the market and show the weighted in-degrees of the nodes in the market network and the investor network can represent the herding degree and the confidence degree of the investor,respectively.Using stock transaction data of Microsoft,US S&P 500 stock index,and China Hushen 300 stock index,we update the two networks and find that there exists a high similarity of network topological properties and a significant correlation of node parameter sequences between the market network and the investor network.Finally,we theoretically derive and conclude that the investor’s herding degree and confidence degree are highly related to each other when there is a clear market trend.展开更多
Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) atta...Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) attack intents: besides dealing with damaging or destroying facilities, the more essential purpose of APT attacks is to gather confidential data from target hosts by planting Trojans. Inspired by this idea and some in-depth analyses on recently happened APT attacks, five typical communication characteristics are adopted to describe application’s network behavior, with which a fine-grained classifier based on Decision Tree and Na ve Bayes is modeled. Finally, with the training of supervised machine learning approaches, the classification detection method is implemented. Compared with general methods, this method is capable of enhancing the detection and awareness capability of unknown Trojans with less resource consumption.展开更多
Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately ...Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately analyze the communication behavior.Traditional means can hardly utilize the scarce and crude spectrum sensing data captured in a real scene.Thus,communication behavior recognition using raw sensing data under smallsample condition has become a new challenge.In this paper,a data enhanced communication behavior recognition(DECBR)scheme is proposed to meet this challenge.Firstly,a preprocessing method is designed to make the raw spectrum data suitable for the proposed scheme.Then,an adaptive convolutional neural network structure is exploited to carry out communication behavior recognition.Moreover,DCGAN is applied to support data enhancement,which realize communication behavior recognition under small-sample condition.Finally,the scheme is verified by experiments under different data size.The results show that the DECBR scheme can greatly improve the accuracy and efficiency of behavior recognition under smallsample condition.展开更多
In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined...In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined with 3 D Inception network(I3 D) and gated recurrent unit(GRU) network is proposed.The algorithm first expands the Inception module to three-dimensional,and builds a network based on the three-dimensional module,and expands SENet to three-dimensional,making it an attention mechanism that can pay attention to the three-dimensional channel.Then SENet is introduced into the 13 D network,named SE-I3 D,and SENet is introduced into the CRU network,named SE-GRU.And,SE-13 D and SE-GRU are merged,named SE-13 D-GRU.Finally,the network uses Softmax to classify the results in the UCF-101 dataset.The experimental results show that the SE-I3 D-GRU network achieves a recognition rate of 93.2% on the UCF-101 dataset.展开更多
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ...Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.展开更多
Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-...Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process.展开更多
基金Supported by the Pharmaceutical Science and Technology Project of Zhejiang Province,No.2023RC266the Natural Science Foundation of Ningbo,No.202003N4266.
文摘BACKGROUND Group cognitive behavioral therapy(GCBT)is increasingly being used to treat obsessive-compulsive disorder(OCD)because of its high efficiency,economy,and interaction among group members.However,the changes in network functional connectivity(FC)in patients with OCD with GCBT remain unclear.AIM To investigate inter-and intra-network resting-state FC(rs-FC)abnormalities before and after GCBT in unmedicated patients with OCD and validate the efficacy of GCBT.METHODS Overall,33 individuals with OCD and 26 healthy controls underwent resting-state functional magnetic resonance imaging.The patients were rescanned 12 weeks after GCBT.Four cognition-related networks-default mode network(DMN),dorsal attention network(DAN),salience network(SAN),and frontoparietal network(FPN)-were selected to examine FC abnormalities within and between OCD networks before and after GCBT.Neuropsychological assessments including memory,executive function,speech,attention,and visuospatial ability were reassessed following GCBT.Pearson’s correlations were used to analyze the relationship between aberrant FC in cognition-related networks and altered neuropsychological assessments in patients.RESULTS Rs-FC within the DMN and DAN decreased significantly.Additionally,rs-FC between the DMN-DAN,DMNFPN,DMN-SAN,and DAN-SAN also decreased.Significant improvements were observed in cognitive functions,such as memory,executive function,attention,and visuospatial ability.Furthermore,reduced rs-FC within the DMN correlated with visuospatial ability and executive function;DAN positively correlated with Shape Trails Test(STT)-A test elapsed time;DMN-DAN negatively correlated with Rey-Osterrieth Complex Figure(Rey-O)mimicry time and the three elapsed times of the tower of Hanoi;DMN-SAN negatively correlated with Rey-O imitation time and positively correlated with STT-A test elapsed time;and DMN-FPN negatively correlated with Auditory Word Learning Test N1 and N4 scores.CONCLUSION Decreased rs-FC within the DMN and DAN,which correlated with executive function post-treatment,has potential as a neuroimaging marker to predict treatment response to GCBT in patients with OCD.
基金Project supported by the National Natural Science Foundation of China (Grant No. 72174121)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, and the Soft Science Research Project of Shanghai (Grant No. 22692112600)。
文摘Information plays a crucial role in guiding behavioral decisions during public health emergencies. Individuals communicate to acquire relevant knowledge about an epidemic, which influences their decisions to adopt protective measures.However, whether to disseminate specific information is also a behavioral decision. In light of this understanding, we develop a coupled information–vaccination–epidemic model to depict these co-evolutionary dynamics in a three-layer network. Negative information dissemination and vaccination are treated as separate decision-making processes. We then examine the combined effects of herd and risk motives on information dissemination and vaccination decisions through the lens of game theory. The microscopic Markov chain approach(MMCA) is used to describe the dynamic process and to derive the epidemic threshold. Simulation results indicate that increasing the cost of negative information dissemination and providing timely clarification can effectively control the epidemic. Furthermore, a phenomenon of diminishing marginal utility is observed as the cost of dissemination increases, suggesting that authorities do not need to overinvest in suppressing negative information. Conversely, reducing the cost of vaccination and increasing vaccine efficacy emerge as more effective strategies for outbreak control. In addition, we find that the scale of the epidemic is greater when the herd motive dominates behavioral decision-making. In conclusion, this study provides a new perspective for understanding the complexity of epidemic spreading by starting with the construction of different behavioral decisions.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62371253)the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24_1179)。
文摘As the economy grows, environmental issues are becoming increasingly severe, making the promotion of green behavior more urgent. Information dissemination and policy regulation play crucial roles in influencing and amplifying the spread of green behavior across society. To this end, a novel three-layer model in multilayer networks is proposed. In the novel model, the information layer describes green information spreading, the physical contact layer depicts green behavior propagation, and policy regulation is symbolized by an isolated node beneath the two layers. Then, we deduce the green behavior threshold for the three-layer model using the microscopic Markov chain approach. Moreover, subject to some individuals who are more likely to influence others or become green nodes and the limitations of the capacity of policy regulation, an optimal scheme is given that could optimize policy interventions to most effectively prompt green behavior.Subsequently, simulations are performed to validate the preciseness and theoretical results of the new model. It reveals that policy regulation can prompt the prevalence and outbreak of green behavior. Then, the green behavior is more likely to spread and be prevalent in the SF network than in the ER network. Additionally, optimal allocation is highly successful in facilitating the dissemination of green behavior. In practice, the optimal allocation strategy could prioritize interventions at critical nodes or regions, such as highly connected urban areas, where the impact of green behavior promotion would be most significant.
基金National Natural Science Foundation of China(U2133208,U20A20161)National Natural Science Foundation of China(No.62273244)Sichuan Science and Technology Program(No.2022YFG0180).
文摘In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 72174121 and 71774111)the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learningthe Natural Science Foundation of Shanghai (Grant No. 21ZR1444100)
文摘Today,with the rapid development of the internet,a large amount of information often accompanies the rapid transmission of disease outbreaks,and increasing numbers of scholars are studying the relationship between information and the disease transmission process using complex networks.In fact,the disease transmission process is very complex.Besides this information,there will often be individual behavioral measures and other factors to consider.Most of the previous research has aimed to establish a two-layer network model to consider the impact of information on the transmission process of disease,rarely divided into information and behavior,respectively.To carry out a more in-depth analysis of the disease transmission process and the intrinsic influencing mechanism,this paper divides information and behavior into two layers and proposes the establishment of a complex network to study the dynamic co-evolution of information diffusion,vaccination behavior,and disease transmission.This is achieved by considering four influential relationships between adjacent layers in multilayer networks.In the information layer,the diffusion process of negative information is described,and the feedback effects of local and global vaccination are considered.In the behavioral layer,an individual's vaccination behavior is described,and the probability of an individual receiving a vaccination is influenced by two factors:the influence of negative information,and the influence of local and global disease severity.In the disease layer,individual susceptibility is considered to be influenced by vaccination behavior.The state transition equations are derived using the micro Markov chain approach(MMCA),and disease prevalence thresholds are obtained.It is demonstrated through simulation experiments that the negative information diffusion is less influenced by local vaccination behavior,and is mainly influenced by global vaccination behavior;vaccination behavior is mainly influenced by local disease conditions,and is less influenced by global disease conditions;the disease transmission threshold increases with the increasing vaccination rate;and the scale of disease transmission increases with the increasing negative information diffusion rate and decreases with the increasing vaccination rate.Finally,it is found that when individual vaccination behavior considers both the influence of negative information and disease,it can increase the disease transmission threshold and reduce the scale of disease transmission.Therefore,we should resist the diffusion of negative information,increase vaccination proportions,and take appropriate protective measures in time.
基金supported in part by the Chongqing Electronics Engineering Technology Research Center for Interactive Learningin part by the Chongqing key discipline of electronic informationin part by the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202201630)。
文摘Traditional wireless sensor networks(WSNs)are typically deployed in remote and hostile environments for information collection.The wireless communication methods adopted by sensor nodes may make the network highly vulnerable to various attacks.Traditional encryption and authentication mechanisms cannot prevent attacks launched by internal malicious nodes.The trust-based security mechanism is usually adopted to solve this problem in WSNs.However,the behavioral evidence used for trust estimation presents some uncertainties due to the open wireless medium and the inexpensive sensor nodes.Moreover,how to efficiently collect behavioral evidences are rarely discussed.To address these issues,in this paper,we present a trust management mechanism based on fuzzy logic and a cloud model.First,a type-II fuzzy logic system is used to preprocess the behavioral evidences and alleviate uncertainty.Then,the cloud model is introduced to estimate the trust values for sensor nodes.Finally,a dynamic behavior monitoring protocol is proposed to provide a balance between energy conservation and safety assurance.Simulation results demonstrate that our trust management mechanism can effectively protect the network from internal malicious attacks while enhancing the energy efficiency of behavior monitoring.
基金supported by the SP2024/089 Project by the Faculty of Materials Science and Technology,VˇSB-Technical University of Ostrava.
文摘In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis.
文摘This paper examines the travel behaviors of hand-foot-and-mouth disease(HFMD)patients in Nanchang City in central China.Based on the HFMD patients’hospital visitation data from the Center of Disease Control(CDC)of Nanchang in 2018,a spatial network of patient-to-hospital trip flows is constructed.A Geographic Information Systems(GIS)automated network community detec-tion method,termed‘ScLeiden’,is utilized to delineate the study area into six hospital service areas(HSAs)to represent distinctive health care markets.Patients’travel patterns across these HSAs are compared to highlight the geographic disparity.In two HSAs anchored by major hospitals in the regions,the volume of patients increased up to a travel range and then declined,and thus formed a single peak in the trip volume distribution curve across travel time.Each of the remaining four HSAs exhibited two or more peaks in their trip volume distribution curves.The patterns reflected the split choices of patients for the largest Children Hospital in the region,the second-tier county hospital,or others,which were likely to be stratified by their economic affordability,transportation means,and possible health literacy.The study provides valuable insights into the delineation of HSAs and the unique patients’travel behaviors in China.
基金supported by the National Natural Science Foundation of China(72061006)the research on the auxiliary diagnosis system of chronic injury of levator scapulae based on the concept of digital twin(Contract No:Qian Kehe Support[2023]General 117)Research on indoor intelligent assisted walking robot for the rehabilitation of walking ability of the elderly(Contract No:Qian kehe Support[2023]General 124).
文摘Stroke survivors often face significant challenges when performing daily self-care activities due to upper limb motor impairments.Traditional surface electromyography(sEMG)analysis typically focuses on isolated hand postures,overlooking the complexity of object-interactive behaviors that are crucial for promoting patient independence.This study introduces a novel framework that combines high-density sEMG(HD-sEMG)signals with an improved Whale Optimization Algorithm(IWOA)-optimized Long Short-Term Memory(LSTM)network to address this limitation.The key contributions of this work include:(1)the creation of a specialized HD-sEMG dataset that captures nine continuous self-care behaviors,along with time and posture markers,to better reflect real-world patient interactions;(2)the development of a multi-channel feature fusion module based on Pascal’s theorem,which enables efficient signal segmentation and spatial–temporal feature extraction;and(3)the enhancement of the IWOA algorithm,which integrates optimal point set initialization,a diversity-driven pooling mechanism,and cosine-based differential evolution to optimize LSTM hyperparameters,thereby improving convergence and global search capabilities.Experimental results demonstrate superior performance,achieving 99.58%accuracy in self-care behavior recognition and 86.19%accuracy for 17 continuous gestures on the Ninapro db2 benchmark.The framework operates with low latency,meeting the real-time requirements for assistive devices.By enabling precise,context-aware recognition of daily activities,this work advances personalized rehabilitation technologies,empowering stroke patients to regain autonomy in self-care tasks.The proposed methodology offers a robust,scalable solution for clinical applications,bridging the gap between laboratory-based gesture recognition and practical,patient-centered care.
基金The National Natural Science Foundation of China(No.60621002)the National High Technology Research and Development Pro-gram of China(863 Program)(No.2007AA01Z2B4).
文摘A novel behavioral model using three-layer time-delay feed-forward neural networks (TDFFNN)is adopted to model radio frequency (RF)power amplifiers exhibiting memory nonlinearities. In order to extract the parameters, the back- propagation algorithm is applied to train the proposed neural networks. The proposed model is verified by the typical odd- order-only memory polynomial model in simulation, and the performance is compared with different numbers of taped delay lines(TDLs) and perceptrons of the hidden layer. For validating the TDFFNN model by experiments, a digital test bench is set up to collect input and output data of power amplifiers at a 60 × 10^6 sample/s sampling rate. The 3.75 MHz 16-QAM signal generated in the vector signal generator(VSG) is chosen as the input signal, when measuring the dynamic AM/AM and AM/PM characteristics of power amplifiers. By comparisons and analyses, the presented model provides a good performance in convergence, accuracy and efficiency, which is approved by simulation results and experimental results in the time domain and frequency domain.
基金sponsored by the National Natural Science Foundation of China under grant number No.61100008,61201084the China Postdoctoral Science Foundation under Grant No.2013M541346+3 种基金Heilongiiang Postdoctoral Special Fund(Postdoctoral Youth Talent Program)under Grant No.LBH-TZ0504Heilongjiang Postdoctoral Fund under Grant No.LBH-Z13058the Natural Science Foundation of Heilongjiang Province of China under Grant No.QC2015076The Fundamental Research Funds for the Central Universities of China under grant number HEUCF100602
文摘The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition.
基金sponsored by the National Natural Science Foundation of China under grant number No. 61100008 the Natural Science Foundation of Heilongjiang Province of China under Grant No. LC2016024
文摘In this paper, we discuss building an information dissemination model based on individual behavior. We analyze the individual behavior related to information dissemination and the factors that affect the sharing behavior of individuals, and we define and quantify these factors. We consider these factors as characteristic attributes and use a Bayesian classifier to classify individuals. Considering the forwarding delay characteristics of information dissemination, we present a random time generation method that simulates the delay of information dissemination. Given time and other constraints, a user might not look at all the information that his/her friends published. Therefore, this paper proposes an algorithm to predict information visibility, i.e., it estimates the probability that an individual will see the information. Based on the classification of individual behavior and combined with our random time generation and information visibility prediction method, we propose an information dissemination model based on individual behavior. The model can be used to predict the scale and speed of information propagation. We use data sets from Sina Weibo to validate and analyze the prediction methods of the individual behavior and information dissemination model based on individual behavior. A previously proposedinformation dissemination model provides the foundation for a subsequent study on the evolution of the network and social network analysis. Predicting the scale and speed of information dissemination can also be used for public opinion monitoring.
基金The authors are grateful for the support from the National Natural Science Foundation of China(Grants 11820101001,11572236 and 11372236)the Natural Science Foundation of Shaanxi Province(Grant 2020JQ-010)the State Key Laboratory of Nonlinear Mechanics.
文摘Current constitutive theories face challenges when predicting the extremely large deformation and fracture of hydrogels,which calls for the demands to reveal the fundamental mechanism of the various mechanical behaviors of hydrogels from bottom up.Proper hydrogel network model provides a better approach to bridge the gap between the micro-structure and the macroscopic mechanical responses.This work summarizes the theoretical and numerical researches on the hydrogel network models,aiming to provide new insights into the effect of microstructure on the swelling-deswelling process,hyperelasticity,viscoelasticity and fracture of hydrogels.Hydrogel network models are divided into full-atom network models,realistic network models and abstract network models.Full-atom network models have detailed atomic structure but small size.Realistic network models with different coarse-graining degree have large model size to explain the swelling-deswelling process,hyperelasticity and viscoelasticity.Abstract network models abstract polymer chains into analytical interactions,leading to the great leap of model size.It shows advantages to reproduce the crack initiation and propagation in hydrogels by simulating chain scission.Further research directions on the network modeling are suggested.We hope this work can help integrate the merits of network modeling methods and continuum mechanics to capture the various mechanical behaviors of hydrogels.
基金This work was supported by the National Basic Research Pro-gram of China under Crant No.2007CB311100 Funds of Key Lab of Fujlan Province University Network Security and Cryp- toll1009+3 种基金 the National Science Foundation for Young Scholars of China under Crant No.61001091 Beijing Nature Science Foundation under Crant No. 4122012 "Next-Generation Broad-band Wireless Mobile Communication Network" National Sci-ence and Technology Major Special Issue Funding under Grant No. 2012ZX03002003 Funding Program for Academic tturmn Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality of Chi-na.
文摘In order to construct the trusted network and realize the trust of network behavior,a new multi-dimensional behavior measurement model based on prediction and control is presented.By using behavior predictive equation,individual similarity function,group similarity function,direct trust assessment function,and generalized predictive control,this model can guarantee the trust of an end user and users in its network.Compared with traditional measurement model,the model considers different characteristics of various networks.The trusted measurement policies established according to different network environments have better adaptability.By constructing trusted group,the threats to trusted group will be reduced greatly.Utilizing trusted group to restrict individuals in network can ensure the fault tolerance of trustworthiness of trusted individuals and group.The simulation shows that this scheme can support behavior measurement more efficiently than traditional ones and the model resists viruses and Trojans more efficiently than older ones.
基金Project supported by the Youth Program of the National Social Science Foundation of China(Grant No.18CJY057)。
文摘It is generally accepted that herding behavior and overconfidence behavior are unrelated or even mutually exclusive.However,these behaviors can both lead to some similar market anomalies,such as excessive trading volume and volatility in the stock market.Due to the limitation of traditional time series analysis,we try to study whether there exists network relevance between the investor’s herding behavior and overconfidence behavior based on the complex network method.Since the investor’s herding behavior is based on market trends and overconfidence behavior is based on past performance,we convert the time series data of market trends into a market network and the time series data of the investor’s past judgments into an investor network.Then,we update these networks as new information arrives at the market and show the weighted in-degrees of the nodes in the market network and the investor network can represent the herding degree and the confidence degree of the investor,respectively.Using stock transaction data of Microsoft,US S&P 500 stock index,and China Hushen 300 stock index,we update the two networks and find that there exists a high similarity of network topological properties and a significant correlation of node parameter sequences between the market network and the investor network.Finally,we theoretically derive and conclude that the investor’s herding degree and confidence degree are highly related to each other when there is a clear market trend.
基金Supported by the National Natural Science Foundation of China (61202387, 61103220)Major Projects of National Science and Technology of China(2010ZX03006-001-01)+3 种基金Doctoral Fund of Ministry of Education of China (2012014110002)China Postdoctoral Science Foundation (2012M510641)Hubei Province Natural Science Foundation (2011CDB456)Wuhan Chenguang Plan Project(2012710367)
文摘Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) attack intents: besides dealing with damaging or destroying facilities, the more essential purpose of APT attacks is to gather confidential data from target hosts by planting Trojans. Inspired by this idea and some in-depth analyses on recently happened APT attacks, five typical communication characteristics are adopted to describe application’s network behavior, with which a fine-grained classifier based on Decision Tree and Na ve Bayes is modeled. Finally, with the training of supervised machine learning approaches, the classification detection method is implemented. Compared with general methods, this method is capable of enhancing the detection and awareness capability of unknown Trojans with less resource consumption.
基金supported by the National Natural Science Foundation of China(No.61971439 and No.61702543)the Natural Science Foundation of the Jiangsu Province of China(No.BK20191329)+1 种基金the China Postdoctoral Science Foundation Project(No.2019T120987)the Startup Foundation for Introducing Talent of NUIST(No.2020r100).
文摘Communication behavior recognition is an issue with increasingly importance in the antiterrorism and national defense area.However,the sensing data obtained in actual environment is often not sufficient to accurately analyze the communication behavior.Traditional means can hardly utilize the scarce and crude spectrum sensing data captured in a real scene.Thus,communication behavior recognition using raw sensing data under smallsample condition has become a new challenge.In this paper,a data enhanced communication behavior recognition(DECBR)scheme is proposed to meet this challenge.Firstly,a preprocessing method is designed to make the raw spectrum data suitable for the proposed scheme.Then,an adaptive convolutional neural network structure is exploited to carry out communication behavior recognition.Moreover,DCGAN is applied to support data enhancement,which realize communication behavior recognition under small-sample condition.Finally,the scheme is verified by experiments under different data size.The results show that the DECBR scheme can greatly improve the accuracy and efficiency of behavior recognition under smallsample condition.
基金Supported by the Shaanxi Province Key Research and Development Project(No.2021 GY-280)the Natural Science Foundation of Shaanxi Province(No.2021JM-459)the National Natural Science Foundation of China(No.61772417,61634004,61602377).
文摘In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined with 3 D Inception network(I3 D) and gated recurrent unit(GRU) network is proposed.The algorithm first expands the Inception module to three-dimensional,and builds a network based on the three-dimensional module,and expands SENet to three-dimensional,making it an attention mechanism that can pay attention to the three-dimensional channel.Then SENet is introduced into the 13 D network,named SE-I3 D,and SENet is introduced into the CRU network,named SE-GRU.And,SE-13 D and SE-GRU are merged,named SE-13 D-GRU.Finally,the network uses Softmax to classify the results in the UCF-101 dataset.The experimental results show that the SE-I3 D-GRU network achieves a recognition rate of 93.2% on the UCF-101 dataset.
基金financially supported by the National Natural Science Foundation of China(Nos.51275415 and50905144)the Natural Science Basic Research Plan in Shanxi Province(No.2011JQ6004)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities(No.B08040)
文摘Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes.
文摘Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process.