A hybrid algorithm is presented for nonuniform lossy multiconductor transmission lines (MTL) connected by arbitrary linear load networks. The networks are characterized by a state-variable equation which allows a gene...A hybrid algorithm is presented for nonuniform lossy multiconductor transmission lines (MTL) connected by arbitrary linear load networks. The networks are characterized by a state-variable equation which allows a general characterization of dynamic elements in the cascade networks. The method is achieved by the finite difference-time domain (FDTD) algorithm for the MTL, and the skin effect is taken into account, the more accurate method is used to compute the skin effect. And this method is combined with the computation of the nonuniform transmission lines. Finally, several numerical examples are given, these results indicate that: the current of the lossy MTL is smaller than the lossless of the MTL; and when the load networks contain the dynamic element, the transition time of the current is longer than the MTL connected by resistance only.展开更多
To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute ...To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute the terminal induced voltages excited by the external electromagnetic wave when the terminal networks or intereonnection networks contain the dynamic elements is introduced. The simulation results indicate that the modified method can analyze the terminal induced voltages when the terminal networks or the interconnection networks contain the dynamic elements excited by the external electromagnetic wave. And the results are compared with the results acquired by FDTD method, the two results are completely same. So one effective modified method is implemented to compute the transmission lines.展开更多
The MacCormack method is applied to the analysis of multiconductor transmission lines by intro- ducing a new technique that does not require decoupling. This method can be used to analyze a wide range of problems and ...The MacCormack method is applied to the analysis of multiconductor transmission lines by intro- ducing a new technique that does not require decoupling. This method can be used to analyze a wide range of problems and does not have to consider the matrix forms of distributed parameters. We have developed soft- ware named MacCormack Transmission Line Analyzer based on the proposed method. Numerical examples are presented to demonstrate the accuracy and efficiency of the method and illustrate its application to analyz- ing multiconductor transmission lines.展开更多
The per-unit-length capacitance parameter of multiconductor transmission line (MTL) is commonly extracted with indirect matrix transform method, which is complex and time-consuming. To solve the problem, an improved...The per-unit-length capacitance parameter of multiconductor transmission line (MTL) is commonly extracted with indirect matrix transform method, which is complex and time-consuming. To solve the problem, an improved method to directly compute the MTL capacitance is proposed, which can be applied in the transmission line structure with arbitrary shaped cross-section and arbitrary separate distance. This method imports voltage conversions and matrix operations to simplify the complexity, improves computational efficiency by about 600% with results as accurate as previous method. The novel method presents a clear charge distribution map of MTL, whereas precious method will experience a tortuous process to get charge distribution.展开更多
文摘A hybrid algorithm is presented for nonuniform lossy multiconductor transmission lines (MTL) connected by arbitrary linear load networks. The networks are characterized by a state-variable equation which allows a general characterization of dynamic elements in the cascade networks. The method is achieved by the finite difference-time domain (FDTD) algorithm for the MTL, and the skin effect is taken into account, the more accurate method is used to compute the skin effect. And this method is combined with the computation of the nonuniform transmission lines. Finally, several numerical examples are given, these results indicate that: the current of the lossy MTL is smaller than the lossless of the MTL; and when the load networks contain the dynamic element, the transition time of the current is longer than the MTL connected by resistance only.
文摘To solve the coupling effect of multiconductor transmission lines excited by external electromagnetic wave, the modified method of characteristics is proposed. The modified method of characteristics which can compute the terminal induced voltages excited by the external electromagnetic wave when the terminal networks or intereonnection networks contain the dynamic elements is introduced. The simulation results indicate that the modified method can analyze the terminal induced voltages when the terminal networks or the interconnection networks contain the dynamic elements excited by the external electromagnetic wave. And the results are compared with the results acquired by FDTD method, the two results are completely same. So one effective modified method is implemented to compute the transmission lines.
文摘The MacCormack method is applied to the analysis of multiconductor transmission lines by intro- ducing a new technique that does not require decoupling. This method can be used to analyze a wide range of problems and does not have to consider the matrix forms of distributed parameters. We have developed soft- ware named MacCormack Transmission Line Analyzer based on the proposed method. Numerical examples are presented to demonstrate the accuracy and efficiency of the method and illustrate its application to analyz- ing multiconductor transmission lines.
基金supported by the National Natural Science Foundation of China (60671055)
文摘The per-unit-length capacitance parameter of multiconductor transmission line (MTL) is commonly extracted with indirect matrix transform method, which is complex and time-consuming. To solve the problem, an improved method to directly compute the MTL capacitance is proposed, which can be applied in the transmission line structure with arbitrary shaped cross-section and arbitrary separate distance. This method imports voltage conversions and matrix operations to simplify the complexity, improves computational efficiency by about 600% with results as accurate as previous method. The novel method presents a clear charge distribution map of MTL, whereas precious method will experience a tortuous process to get charge distribution.