The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave pow...In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.展开更多
Recently,an article was published on solid effect(SE)dynamic nuclear polarization(DNP)enhancement,where the au-thors reported achieving 1H enhancement factors up to 500 by increasing the microwave power at 9.4 T,marki...Recently,an article was published on solid effect(SE)dynamic nuclear polarization(DNP)enhancement,where the au-thors reported achieving 1H enhancement factors up to 500 by increasing the microwave power at 9.4 T,marking the highest SE enhancement to date[1].展开更多
In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and ot...In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.展开更多
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re...Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.展开更多
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall...The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.展开更多
4H-SiC MESFETs are fabricated on semi-insulating SiC substrates. Key processes are optimized to obtain better device performance. A microwave power amplifier is demonstrated from a 1mm SiC MESFET for S band operation....4H-SiC MESFETs are fabricated on semi-insulating SiC substrates. Key processes are optimized to obtain better device performance. A microwave power amplifier is demonstrated from a 1mm SiC MESFET for S band operation. When operated at a drain voltage of 64V, the amplifier shows an output power of 4.09W, a gain of 9.3dB,and a power added efficiency of 31.3%.展开更多
An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wi...An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.展开更多
The structure and microwave characteristics of low-voltage SiGe power HBTs are given.With this structure,the device can operate in a low-voltage and high-current state.By using an interdigital emitter strip layout and...The structure and microwave characteristics of low-voltage SiGe power HBTs are given.With this structure,the device can operate in a low-voltage and high-current state.By using an interdigital emitter strip layout and the operating voltage ranging from 3 to 4V,the output power in Class C operation can reach 1 65W at 1GHz,with the gain of 8dB.The highest collector efficiency is 67 8% under 3V.展开更多
The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to ...The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results.展开更多
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigati...In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.展开更多
The 6 MW/4.6 GHz lower hybrid current drive (LHCD) system will be set up on the experimental advanced superconducting tokamak (EAST) for achieving a steady-state op- eration. The high power and continuous wave (C...The 6 MW/4.6 GHz lower hybrid current drive (LHCD) system will be set up on the experimental advanced superconducting tokamak (EAST) for achieving a steady-state op- eration. The high power and continuous wave (CW) mode microwave test bench operating at 250 kW/4.6 GHz has already been finished, which can be used to simulate different kinds of high power microwave environments to test microwave components and units for the new LHCD sys- tem. The power control and data acquisition system on the test bench composed of power control, high reflected power protection and data acquisition function is described here in detail. Long- term operation of the test bench showed that the power control and data acquisition system is very stable and reliable.展开更多
Circularly polarized rectennas operating at X-band are studied in this paper. The quasi-square patches fed by aperture coupling are used as the circularly polarized receiving antennas, which are easily matched and int...Circularly polarized rectennas operating at X-band are studied in this paper. The quasi-square patches fed by aperture coupling are used as the circularly polarized receiving antennas, which are easily matched and integrated with the circuits of rectennas. The double-layer structure not only minimizes the size of the rectennas but also decreases the effects of the circuits on the an- tenna. The receiving elements have broader bandwidth and higher gain than the single-layer patches. Two rectennas operating at 10GHz are designed, fabricated and measured. The voltage of 3.86V on a load of 200? is measured and a high RF-DC conversion efficiency of 75% is obtained at 9.98GHz. It is convenient for this kind of rectennas to form large arrays for high power applications.展开更多
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy...Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.展开更多
The reliability of electronic device is threatened in high power microwave (HPM) environment. In accordance with the situation that the emulation is ineffective in evaluating the accuracy and precision of the HPM effe...The reliability of electronic device is threatened in high power microwave (HPM) environment. In accordance with the situation that the emulation is ineffective in evaluating the accuracy and precision of the HPM effect to electronic device, the experimental method is used to resolve the problem. Low Noise Amplifier (LNA) and Limiter are selected as the objects for the experiments, the structural characteristic of the front-end of radar receiver is described, the phenomena and criterion are elaborated and analyzed using injection method due to its ability to get an accurate threshold avoiding the complex coupling, the basic principle of injection experiment is demonstrated, and the method and process of effect experiment about Low Noise Amplifier and Limiter are also explained. The experimental system is established, and the system is composed of low power microwave source such as TWT, test equipment for obtaining the effect parameters, and some of auxiliary equipments as camera, optical microscope or electron microscopy, attenuator, detector, and directional coupler etc. The microwave delivered from source is adjusted to the power infused by attenuator, and pour in the decanting point of effecter via directional coupler, then the couple signal created by directional coupler is input to the recording instrument after detecting by detector, finally the power of effecter is obtained. The value of power, which damages the effecter in the microwave pulse environment, is classified at the index of sensitivity, and the threshold is obtained by power diagnose and wave test. Some regular understandings of the HPM effect to electronic device are obtained based on the results of the experiments. It turns out that the index of electronic device is influenced significantly by the energy via front door coupling, the MOSFET made up of GaAs is the most wearing part to HPM in LNA, the damage threshold of LNA is about 40dBm under single pulse while in repetitive pulse the value is from 33.3dBm to 43.9dBm according to different wave band. The damage threshold of Limiter is about 56dBm to80dBm.展开更多
This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular...This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power.By formulating the aperture amplitude distribution through a summation of a special set of series,the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms.Based on the theory of matrices,the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector.To meet security requirements,the peak radiation levels outside the receiving area are considered to be extra constraints.A hybrid grey wolf optimizer and Nelder–Mead simplex method is developed to deal with this constrained optimization problem.In order to demonstrate the effectiveness of the proposed method,numerical experiments on continuous apertures are conducted;then,discrete arrays of isotropic elements are employed to validate the correctness of the optimized results.Finally,patch arrays are adopted to further verify the validity of the proposed method.展开更多
The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap swi...The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.展开更多
Experiments were conducted to investigate the effects of low power microwave radiation on germination and growth rate in seeds. In the present paper, the bioeffects of low power (non-thermal intensity) microwave modul...Experiments were conducted to investigate the effects of low power microwave radiation on germination and growth rate in seeds. In the present paper, the bioeffects of low power (non-thermal intensity) microwave modulated with 1 KHz square wave have been studied. Experiments were performed in X-band frequencies using klystron based microwave test bench. Microwave parameters like frequency, power, exposure time and power density were varied while irradiating seed samples to study their influence on germination. The seed samples used for the experiment included wheat (Triticum aestivum), bengal gram (Cicer arietinum), green gram (Vigna radiate) and moth bean (Vigna Aconitifolia). Seed germination %, plant height, root length and dry matter % (biomass %) were recorded and compared with control seeds. The effects of different treatments were found to be stimulating the germination and seedling vigour of plants especially in power and exposure time treatments while increase in frequency and power density has reduced the seed germination and seedling vigour. The effect also varied with the nature of seeds.展开更多
A simple theoretical modeling is made to describe the reflection features of the high power microwave (HPM) in the mixture-atmosphere. The time-space dependent mixture-atmosphere is generated by ionization of the neut...A simple theoretical modeling is made to describe the reflection features of the high power microwave (HPM) in the mixture-atmosphere. The time-space dependent mixture-atmosphere is generated by ionization of the neutral molecules in atmosphere. Reflection will occur when HPM propagates in such mixture-atmosphere. The reflection characteristic of the HPM propagation in the mixture-atmosphere is investigated by FDTD numerical experiments in inhomogeneous medium, the influence on the reflection for different HPM parameters is concluded. An additional stability conditions for the FDTD difference scheme of the HPM mixture-atmosphere propagation model are presented.展开更多
While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas...While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.展开更多
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
文摘In the last decade,space solar power satellites(SSPSs)have been conceived to support net-zero carbon emissions and have attracted considerable attention.Electric energy is transmitted to the ground via a microwave power beam,a technology known as microwave power transmission(MPT).Due to the vast transmission distance of tens of thousands of kilometers,the power transmitting antenna array must span up to 1 kilometer in diameter.At the same time,the size of the rectifying array on the ground should extend over a few kilometers.This makes the MPT system of SSPSs significantly larger than the existing aerospace engineering system.To design and operate a rational MPT system,comprehensive optimization is required.Taking the space MPT system engineering into consideration,a novel multi-objective optimization function is proposed and further analyzed.The multi-objective optimization problem is modeled mathematically.Beam collection efficiency(BCE)is the primary factor,followed by the thermal management capability.Some tapers,designed to solve the conflict between BCE and the thermal problem,are reviewed.In addition to these two factors,rectenna design complexity is included as a functional factor in the optimization objective.Weight coefficients are assigned to these factors to prioritize them.Radiating planar arrays with different aperture illumination fields are studied,and their performances are compared using the multi-objective optimization function.Transmitting array size,rectifying array size,transmission distance,and transmitted power remaine constant in various cases,ensuring fair comparisons.The analysis results show that the proposed optimization function is effective in optimizing and selecting the MPT system architecture.It is also noted that the multi-objective optimization function can be expanded to include other factors in the future.
文摘Recently,an article was published on solid effect(SE)dynamic nuclear polarization(DNP)enhancement,where the au-thors reported achieving 1H enhancement factors up to 500 by increasing the microwave power at 9.4 T,marking the highest SE enhancement to date[1].
基金supported by National Natural Science Foundation of China(12174350)Science and Technology Project of State Grid Henan Electric Power Company(5217Q0240008).
文摘In the heterogeneous power internet of things(IoT)environment,data signals are acquired to support different business systems to realize advanced intelligent applications,with massive,multi-source,heterogeneous and other characteristics.Reliable perception of information and efficient transmission of energy in multi-source heterogeneous environments are crucial issues.Compressive sensing(CS),as an effective method of signal compression and transmission,can accurately recover the original signal only by very few sampling.In this paper,we study a new method of multi-source heterogeneous data signal reconstruction of power IoT based on compressive sensing technology.Based on the traditional compressive sensing technology to directly recover multi-source heterogeneous signals,we fully use the interference subspace information to design the measurement matrix,which directly and effectively eliminates the interference while making the measurement.The measure matrix is optimized by minimizing the average cross-coherence of the matrix,and the reconstruction performance of the new method is further improved.Finally,the effectiveness of the new method with different parameter settings under different multi-source heterogeneous data signal cases is verified by using orthogonal matching pursuit(OMP)and sparsity adaptive matching pursuit(SAMP)for considering the actual environment with prior information utilization of signal sparsity and no prior information utilization of signal sparsity.
基金financial support from the National Natural Science Foundation of China(Grant No.41827806)the Liaoning Provincial Science and Technology Program of China(Grant No.2022JH2/101300109).
文摘Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used.
基金supported by the National Key Research and Development Program of China(grant number 2019YFE0123600)。
文摘The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT.
文摘4H-SiC MESFETs are fabricated on semi-insulating SiC substrates. Key processes are optimized to obtain better device performance. A microwave power amplifier is demonstrated from a 1mm SiC MESFET for S band operation. When operated at a drain voltage of 64V, the amplifier shows an output power of 4.09W, a gain of 9.3dB,and a power added efficiency of 31.3%.
文摘An lnGaP/GaAs HBT microwave power transistor with on-chip parallel RC stabilization network is developed with a standard GaAs MMIC process. From the stability factor K, the device shows unconditional stability in a wide frequency range due to the RC network. The power characteristics of the device as measured by a loadpull system show that the large-signal performance of the power transistor is affected slightly by the RC network. Psat is 30dBm at 5.4GHz,and PldB is larger than 21.6dBm at llGHz. The stability of the device due to RC network is proved by a power combination circuit. This makes the power transistor very suitable for applications in microwavc high power ttBT amplifiers.
文摘The structure and microwave characteristics of low-voltage SiGe power HBTs are given.With this structure,the device can operate in a low-voltage and high-current state.By using an interdigital emitter strip layout and the operating voltage ranging from 3 to 4V,the output power in Class C operation can reach 1 65W at 1GHz,with the gain of 8dB.The highest collector efficiency is 67 8% under 3V.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339900)the National Natural Science Foundation of China(Grant No.60776034)
文摘The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results.
基金supported by the National Basic Research Program of China(Grant No.2014CB339900)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and TechnologyChina Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model.
基金supported by National Magnetic Confinement Fusion Science Program of China(No.2010GB105001)
文摘The 6 MW/4.6 GHz lower hybrid current drive (LHCD) system will be set up on the experimental advanced superconducting tokamak (EAST) for achieving a steady-state op- eration. The high power and continuous wave (CW) mode microwave test bench operating at 250 kW/4.6 GHz has already been finished, which can be used to simulate different kinds of high power microwave environments to test microwave components and units for the new LHCD sys- tem. The power control and data acquisition system on the test bench composed of power control, high reflected power protection and data acquisition function is described here in detail. Long- term operation of the test bench showed that the power control and data acquisition system is very stable and reliable.
基金Supported by the Development Fund of Shanghai Edu-cation Committee and Shanghai Leading Academic Dis-cipline Project (No.T0102)
文摘Circularly polarized rectennas operating at X-band are studied in this paper. The quasi-square patches fed by aperture coupling are used as the circularly polarized receiving antennas, which are easily matched and integrated with the circuits of rectennas. The double-layer structure not only minimizes the size of the rectennas but also decreases the effects of the circuits on the an- tenna. The receiving elements have broader bandwidth and higher gain than the single-layer patches. Two rectennas operating at 10GHz are designed, fabricated and measured. The voltage of 3.86V on a load of 200? is measured and a high RF-DC conversion efficiency of 75% is obtained at 9.98GHz. It is convenient for this kind of rectennas to form large arrays for high power applications.
基金supported by Shenzhen Key Laboratory of Sensors Technology Open Fund of China (Nos.SST200908, SST200911)
文摘Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas.
文摘The reliability of electronic device is threatened in high power microwave (HPM) environment. In accordance with the situation that the emulation is ineffective in evaluating the accuracy and precision of the HPM effect to electronic device, the experimental method is used to resolve the problem. Low Noise Amplifier (LNA) and Limiter are selected as the objects for the experiments, the structural characteristic of the front-end of radar receiver is described, the phenomena and criterion are elaborated and analyzed using injection method due to its ability to get an accurate threshold avoiding the complex coupling, the basic principle of injection experiment is demonstrated, and the method and process of effect experiment about Low Noise Amplifier and Limiter are also explained. The experimental system is established, and the system is composed of low power microwave source such as TWT, test equipment for obtaining the effect parameters, and some of auxiliary equipments as camera, optical microscope or electron microscopy, attenuator, detector, and directional coupler etc. The microwave delivered from source is adjusted to the power infused by attenuator, and pour in the decanting point of effecter via directional coupler, then the couple signal created by directional coupler is input to the recording instrument after detecting by detector, finally the power of effecter is obtained. The value of power, which damages the effecter in the microwave pulse environment, is classified at the index of sensitivity, and the threshold is obtained by power diagnose and wave test. Some regular understandings of the HPM effect to electronic device are obtained based on the results of the experiments. It turns out that the index of electronic device is influenced significantly by the energy via front door coupling, the MOSFET made up of GaAs is the most wearing part to HPM in LNA, the damage threshold of LNA is about 40dBm under single pulse while in repetitive pulse the value is from 33.3dBm to 43.9dBm according to different wave band. The damage threshold of Limiter is about 56dBm to80dBm.
基金supported in part by the National Key Research and Development Program of China(2021YFB3900300)in part by the National Natural Science Foundation of China(62201416)+2 种基金in part by the Fundamental Research Funds for the Central Universities(QTZX23070)in part by the Qin Chuang Yuan High-Level Innovative and Entrepreneurial Talents Project(QCYRCXM-2022-314)in part by Singapore Ministry of Education Academic Research Fund Tier 1。
文摘This work presents an optimal design method of antenna aperture illumination for microwave power transmission with an annular collection area.The objective is to maximize the ratio of the power radiated on the annular collection area to the total transmitted power.By formulating the aperture amplitude distribution through a summation of a special set of series,the optimal design problem can be reduced to finding the maximum ratio of two real quadratic forms.Based on the theory of matrices,the solution to the formulated optimization problem is to determine the largest characteristic value and its associated characteristic vector.To meet security requirements,the peak radiation levels outside the receiving area are considered to be extra constraints.A hybrid grey wolf optimizer and Nelder–Mead simplex method is developed to deal with this constrained optimization problem.In order to demonstrate the effectiveness of the proposed method,numerical experiments on continuous apertures are conducted;then,discrete arrays of isotropic elements are employed to validate the correctness of the optimized results.Finally,patch arrays are adopted to further verify the validity of the proposed method.
文摘The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.
文摘Experiments were conducted to investigate the effects of low power microwave radiation on germination and growth rate in seeds. In the present paper, the bioeffects of low power (non-thermal intensity) microwave modulated with 1 KHz square wave have been studied. Experiments were performed in X-band frequencies using klystron based microwave test bench. Microwave parameters like frequency, power, exposure time and power density were varied while irradiating seed samples to study their influence on germination. The seed samples used for the experiment included wheat (Triticum aestivum), bengal gram (Cicer arietinum), green gram (Vigna radiate) and moth bean (Vigna Aconitifolia). Seed germination %, plant height, root length and dry matter % (biomass %) were recorded and compared with control seeds. The effects of different treatments were found to be stimulating the germination and seedling vigour of plants especially in power and exposure time treatments while increase in frequency and power density has reduced the seed germination and seedling vigour. The effect also varied with the nature of seeds.
文摘A simple theoretical modeling is made to describe the reflection features of the high power microwave (HPM) in the mixture-atmosphere. The time-space dependent mixture-atmosphere is generated by ionization of the neutral molecules in atmosphere. Reflection will occur when HPM propagates in such mixture-atmosphere. The reflection characteristic of the HPM propagation in the mixture-atmosphere is investigated by FDTD numerical experiments in inhomogeneous medium, the influence on the reflection for different HPM parameters is concluded. An additional stability conditions for the FDTD difference scheme of the HPM mixture-atmosphere propagation model are presented.
基金supported by the Singapore Ministry of Education Academic Research Fund Tier 1。
文摘While sufficient review articles exist on inductive short-range wireless power transfer(WPT),long-haul microwave WPT(MWPT)for solar power satellites,and ambient microwave wireless energy harvesting(MWEH)in urban areas,few studies focus on the fundamental modeling and related design automation of receiver systems.This article reviews the development of MWPT and MWEH receivers,with a focus on rectenna design automation.A novel rectifier model capable of accurately modeling the rectification process under both high and low input power is presented.The model reveals the theoretical boundary of radio frequency-to-direct current(dc)power conversion efficiency and,most importantly,enables an automated system design.The automated rectenna design flow is sequential,with the minimal engagement of iterative optimization.It covers the design automation of every module(i.e.,rectifiers,matching circuits,antennae,and dc–dc converters).Scaling-up of the technique to large rectenna arrays is also possible,where the challenges in array partitioning and power combining are briefly discussed.In addition,several cutting-edge rectenna techniques for MWPT and MWEH are reviewed,including the dynamic range extension technique,the harmonics-based retro-directive technique,and the simultaneous wireless information and power transfer technique,which can be good complements to the presented automated design methodology.