A new metal-organic framework (MOF),{[Zn_7 (BPS)_4 (OH)_6 (H_2O)_2]·5 H_2O]_n}(1), (H_2 BPS=4,4′-bibenzoic acid-2,2′-sulfone), based on a wavy and infinite chain-shaped secondary building units, has been synthe...A new metal-organic framework (MOF),{[Zn_7 (BPS)_4 (OH)_6 (H_2O)_2]·5 H_2O]_n}(1), (H_2 BPS=4,4′-bibenzoic acid-2,2′-sulfone), based on a wavy and infinite chain-shaped secondary building units, has been synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction and further confirmed by PXRD, TGA and IR spectrum. The solid-state emission spectra reveal that compound 1 presents strong luminescence emission bands at room temperature. The fluorescent properties of compound 1 in diverse organic solvents indicated that 1 has palpable luminescent sense effects for DMF and DMAC.展开更多
This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,w...This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system.展开更多
锂离子电池的荷电状态(state of charge,SOC)在电池均衡、优化能量使用等方面具有重要作用。针对基于模型的SOC估计方法中状态空间方程非线性导致计算量大的问题,提出了使用门控循环单元(gated recurrent units,GRU)软测量SOC,并以此为...锂离子电池的荷电状态(state of charge,SOC)在电池均衡、优化能量使用等方面具有重要作用。针对基于模型的SOC估计方法中状态空间方程非线性导致计算量大的问题,提出了使用门控循环单元(gated recurrent units,GRU)软测量SOC,并以此为观测量构建线性状态空间方程,进而使用卡尔曼滤波(Kalman filter,KF)估计SOC的方法。在随机驾驶循环工况下,所提出方法的SOC估计最大绝对误差为0.017,同时具有较快的估计速度。进一步研究发现,不同充放电倍率下电池模型的参数具有很大差异,导致基于模型的SOC估计方法在复杂情况下的估计精度较低,而所提出的GRU-KF方法因为不需要精确的电池模型,更能适应复杂的工况。展开更多
Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtai...Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.展开更多
Personalized health services are of paramount importance for the treatment and prevention of cardiorespiratory diseases,such as hypertension.The assessment of cardiorespiratory function and biometric identification(ID...Personalized health services are of paramount importance for the treatment and prevention of cardiorespiratory diseases,such as hypertension.The assessment of cardiorespiratory function and biometric identification(ID)is crucial for the effectiveness of such personalized health services.To effectively and accurately monitor pulse wave signals,thus achieving the assessment of cardiorespiratory function,a wearable photonic smart wristband based on an all-polymer sensing unit(All-PSU)is proposed.The smart wristband enables the assessment of cardiorespiratory function by continuously monitoring respiratory rate(RR),heart rate(HR),and blood pressure(BP).Furthermore,it can be utilized for biometric ID purposes.Through the analysis of pulse wave signals using power spectral density(PSD),accurate monitoring of RR and HR is achieved.Additionally,utilizing peak detection algorithms for feature extraction from pulse signals and subsequently employing a variety of machine learning methods,accurate BP monitoring and biometric ID have been realized.For biometric ID,the accuracy rate is 98.55%.Aiming to monitor RR,HR,BP,and ID,our solution demonstrates advantages in integration,functionality,and monitoring precision.These enhancements may contribute to the development of personalized health services aimed at the treatment and prevention of cardiorespiratory diseases.展开更多
基金supported by the National Natural Science Foundation of China(Nos. 21771111, 21601092 and 21371104)the Tianjin Natural Science Foundation(Nos. 15JCZDJC38800 and 16JCZDJC36900)
文摘A new metal-organic framework (MOF),{[Zn_7 (BPS)_4 (OH)_6 (H_2O)_2]·5 H_2O]_n}(1), (H_2 BPS=4,4′-bibenzoic acid-2,2′-sulfone), based on a wavy and infinite chain-shaped secondary building units, has been synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction and further confirmed by PXRD, TGA and IR spectrum. The solid-state emission spectra reveal that compound 1 presents strong luminescence emission bands at room temperature. The fluorescent properties of compound 1 in diverse organic solvents indicated that 1 has palpable luminescent sense effects for DMF and DMAC.
文摘This article reports the latest development of a wireless sensing system,named Martlet,on high-g shock acceleration measurement.The Martlet sensing node design is based on a Texas Instruments Piccolo microcontroller,with clock frequency programmable up to 90 MHz.The high clock frequency of the microcontroller enables Martlet to support high-frequency data acquisition and high-speed onboard computation.In addition,the extensible design of the Martlet node conveniently allows incorporation of multiple sensor boards.In this study,a high-g accelerometer interface board is developed to allow Martlet to work with the selected microelectromechanical system(MEMS)high-g accelerometers.Besides low-pass and highpass filters,amplification gains are also implemented on the high-g accelerometer interface board.Laboratory impact experiments are conducted to validate the performance of the Martlet wireless sensing system with the high-g accelerometer board.The results of this study show that the performance of the wireless sensing system is comparable to the cabled system.
基金supported by the National Natural Science Foundation of China(Grant No.52272438)the Jiangsu Agricultural Science and Technology Innovation[Grant No.CX(21)3149]+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(Grant No.Yueshengjihua-2206)the Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment(Grant No.XTCX2007).
文摘Field environmental sensing can acquire real-time environmental information,which will be applied to field operation,through the fusion of multiple sensors.Multi-sensor fusion refers to the fusion of information obtained from multiple sensors using more advanced data processing methods.The main objective of applying this technology in field environment perception is to acquire real-time environmental information,making agricultural mechanical devices operate better in complex farmland environment with stronger sensing ability and operational accuracy.In this paper,the characteristics of sensors are studied to clarify the advantages and existing problems of each type of sensors and point out that multiple sensors can be introduced to compensate for the information loss.Secondly,the mainstream information fusion types at present are outlined.The characteristics,advantages and disadvantages of different fusion methods are analyzed.The important studies and applications related to multi-sensor information fusion technology published at home and abroad are listed.Eventually,the existing problems in the field environment sensing at present are summarized and the prospect for future of sensors precise sensing,multi-dimensional fusion strategies,discrepancies in sensor fusion and agricultural information processing are proposed in hope of providing reference for the deeper development of smart agriculture.
基金funded by the National Key R&D Program of China(2022YFE0140400)the National Natural Science Foundation of China(62405027, 62111530238, 62003046)+3 种基金Supporting project of major scientific research projects of Beijing Normal University at Zhuhai (ZHPT2023007)supported by the Tang Scholar of Beijing Normal Universityco-funded by the financial support of the European Union under the REFRESH-Research Excellence For REgion Sustainability and High-tech Industries project number CZ.10.03.01/00/22003/0000048 via the Operational Programme Just Transitionthe scope of the projects CICECO-Aveiro Institute of Materials, UIDB/50011/2020 (DOI 10.54499/UIDB/50011/2020), UIDP/50011/2020 (DOI 10.54499/UIDP/50011/2020) & LA/P/0006/2020 (DOI 10.54499/LA/P/0006/2020) financed by national funds through the FCT/MCTES (PIDDAC)
文摘Personalized health services are of paramount importance for the treatment and prevention of cardiorespiratory diseases,such as hypertension.The assessment of cardiorespiratory function and biometric identification(ID)is crucial for the effectiveness of such personalized health services.To effectively and accurately monitor pulse wave signals,thus achieving the assessment of cardiorespiratory function,a wearable photonic smart wristband based on an all-polymer sensing unit(All-PSU)is proposed.The smart wristband enables the assessment of cardiorespiratory function by continuously monitoring respiratory rate(RR),heart rate(HR),and blood pressure(BP).Furthermore,it can be utilized for biometric ID purposes.Through the analysis of pulse wave signals using power spectral density(PSD),accurate monitoring of RR and HR is achieved.Additionally,utilizing peak detection algorithms for feature extraction from pulse signals and subsequently employing a variety of machine learning methods,accurate BP monitoring and biometric ID have been realized.For biometric ID,the accuracy rate is 98.55%.Aiming to monitor RR,HR,BP,and ID,our solution demonstrates advantages in integration,functionality,and monitoring precision.These enhancements may contribute to the development of personalized health services aimed at the treatment and prevention of cardiorespiratory diseases.