The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings ima...The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings.展开更多
The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods ha...The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods have achieved significant improvements in image super-resolution(SR),current CNNbased techniques mainly contain massive parameters and a high computational complexity,limiting their practical applications.In this paper,we present a fast and lightweight framework,named weighted multi-scale residual network(WMRN),for a better tradeoff between SR performance and computational efficiency.With the modified residual structure,depthwise separable convolutions(DS Convs)are employed to improve convolutional operations’efficiency.Furthermore,several weighted multi-scale residual blocks(WMRBs)are stacked to enhance the multi-scale representation capability.In the reconstruction subnetwork,a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image.Extensive experiments were conducted to evaluate the proposed model,and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN.展开更多
The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image...The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality.展开更多
Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices ...Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to ...Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.展开更多
In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accurac...In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.展开更多
In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantl...In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.展开更多
Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated ...Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction.展开更多
Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that...Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that maps inputs directly to outputs, making it less difficult to optimize. In this paper, we incorporate differential information into the original residual block to improve the representative ability of the ResNet, allowing the modified network to capture more complex and metaphysical features. The proposed DFNet preserves the features after each convolutional operation in the residual block, and combines the feature maps of different levels of abstraction through the differential information. To verify the effectiveness of DFNet on image recognition, we select six distinct classification datasets. The experimental results show that our proposed DFNet has better performance and generalization ability than other state-of-the-art variants of ResNet in terms of classification accuracy and other statistical analysis.展开更多
Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete v...Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete vessel segmentation and poor continuity.In this study,we propose CT-MFENet to address the aforementioned issues.First,the use of context transformer(CT)allows for the integration of contextual feature information,which helps establish the connection between pixels and solve the problem of incomplete vessel continuity.Second,multi-scale dense residual networks are used instead of traditional CNN to address the issue of inadequate local feature extraction when the model encounters vessels at multiple scales.In the decoding stage,we introduce a local-global fusion module.It enhances the localization of vascular information and reduces the semantic gap between high-and low-level features.To address the class imbalance in retinal images,we propose a hybrid loss function that enhances the segmentation ability of the model for topological structures.We conducted experiments on the publicly available DRIVE,CHASEDB1,STARE,and IOSTAR datasets.The experimental results show that our CT-MFENet performs better than most existing methods,including the baseline U-Net.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
This paper introduces a novel numerical method based on an energy-minimizing normalized residual network(EMNorm Res Net)to compute the ground-state solution of Bose-Einstein condensates at zero or low temperatures.Sta...This paper introduces a novel numerical method based on an energy-minimizing normalized residual network(EMNorm Res Net)to compute the ground-state solution of Bose-Einstein condensates at zero or low temperatures.Starting from the three-dimensional Gross-Pitaevskii equation(GPE),we reduce it to the 1D and 2D GPEs because of the radial symmetry and cylindrical symmetry.The ground-state solution is formulated by minimizing the energy functional under constraints,which is directly solved using the EM-Norm Res Net approach.The paper provides detailed solutions for the ground states in 1D,2D(with radial symmetry),and 3D(with cylindrical symmetry).We use the Thomas-Fermi approximation as the target function to pre-train the neural network.Then,the formal network is trained using the energy minimization method.In contrast to traditional numerical methods,our neural network approach introduces two key innovations:(i)a novel normalization technique designed for high-dimensional systems within an energy-based loss function;(ii)improved training efficiency and model robustness by incorporating gradient stabilization techniques into residual networks.Extensive numerical experiments validate the method's accuracy across different spatial dimensions.展开更多
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc...Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance.展开更多
The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential ...The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential for safeguarding network integrity.To address the low accuracy of existing intrusion detection models in identifying network attacks,this paper proposes an intrusion detection method based on the fusion of Spatial Attention mechanism and Residual Neural Network(SA-ResNet).Utilizing residual connections can effectively capture local features in the data;by introducing a spatial attention mechanism,the global dependency relationships of intrusion features can be extracted,enhancing the intrusion recognition model’s focus on the global features of intrusions,and effectively improving the accuracy of intrusion recognition.The proposed model in this paper was experimentally verified on theNSL-KDD dataset.The experimental results showthat the intrusion recognition accuracy of the intrusion detection method based on SA-ResNet has reached 99.86%,and its overall accuracy is 0.41% higher than that of traditional Convolutional Neural Network(CNN)models.展开更多
In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study in...In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks.展开更多
Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attentio...Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated the model on publicly available datasets, including Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV), which contain critical care patient data, and the Beijing Multi-Site Air Quality dataset, which measures environmental air quality. The proposed DRes-CNN method achieved a root mean square error (RMSE) of 0.00006, highlighting its high accuracy and robustness. We also compared with Low Light-Convolutional Neural Network (LL-CNN) and U-Net methods, which had RMSE values of 0.00075 and 0.00073, respectively. This represented an improvement of approximately 92% over LL-CNN and 91% over U-Net. The results showed that this DRes-CNN-based imputation method outperforms current state-of-the-art models. These results established DRes-CNN as a reliable solution for addressing missing data.展开更多
Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the dev...Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the development of SER system.To address these issues,this paper proposes a framework that incorporates the Attentive Mask Residual Network(AM-ResNet)and the self-supervised learning model Wav2vec 2.0 to obtain AM-ResNet features and Wav2vec 2.0 features respectively,together with a cross-attention module to interact and fuse these two features.The AM-ResNet branch mainly consists of maximum amplitude difference detection,mask residual block,and an attention mechanism.Among them,the maximum amplitude difference detection and the mask residual block act on the pre-processing and the network,respectively,to reduce the impact of silent frames,and the attention mechanism assigns different weights to unvoiced and voiced speech to reduce redundant emotional information caused by unvoiced speech.In the Wav2vec 2.0 branch,this model is introduced as a feature extractor to obtain general speech features(Wav2vec 2.0 features)through pre-training with a large amount of unlabeled speech data,which can assist the SER task and cope with data sparsity problems.In the cross-attention module,AM-ResNet features and Wav2vec 2.0 features are interacted with and fused to obtain the cross-fused features,which are used to predict the final emotion.Furthermore,multi-label learning is also used to add ambiguous emotion utterances to deal with data limitations.Finally,experimental results illustrate the usefulness and superiority of our proposed framework over existing state-of-the-art approaches.展开更多
Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calcu...Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calculating the PDE loss at a set of collocation points,providing advantages such as meshfree and more convenient adaptive sampling.However,when solving PDEs using nonuniform collocation points,PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure.In this work,we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points.To address the issue,we define volume weighting residual and propose volume weighting physics-informed neural networks(VW-PINNs).Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain,we embed explicitly the distribution characteristics of collocation points in the loss evaluation.The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed.Considering the meshfree characteristics of VW-PINNs,we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points.We validate the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions,where conventional PINNs fail.By solving the Burgers’equation,we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by three times,and can reduce the relative L 2 error of conventional PINNs in solving the inverse problem by more than one order of magnitude.展开更多
The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional ch...The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.展开更多
基金This work was supported by National Natural Science Foundation of China:Grant No.62106048.
文摘The detection of ash content in coal slime flotation tailings using deep learning can be hindered by various factors such as foam,impurities,and changing lighting conditions that disrupt the collection of tailings images.To address this challenge,we present a method for ash content detection in coal slime flotation tailings.This method utilizes chromatographic filter paper sampling and a multi-scale residual network,which we refer to as MRCN.Initially,tailings are sampled using chromatographic filter paper to obtain static tailings images,effectively isolating interference factors at the flotation site.Subsequently,the MRCN,consisting of a multi-scale residual network,is employed to extract image features and compute ash content.Within the MRCN structure,tailings images undergo convolution operations through two parallel branches that utilize convolution kernels of different sizes,enabling the extraction of image features at various scales and capturing a more comprehensive representation of the ash content information.Furthermore,a channel attention mechanism is integrated to enhance the performance of the model.The combination of the multi-scale residual structure and the channel attention mechanism within MRCN results in robust capabilities for image feature extraction and ash content detection.Comparative experiments demonstrate that this proposed approach,based on chromatographic filter paper sampling and the multi-scale residual network,exhibits significantly superior performance in the detection of ash content in coal slime flotation tailings.
基金the National Natural Science Foundation of China(61772149,61866009,61762028,U1701267,61702169)Guangxi Science and Technology Project(2019GXNSFFA245014,ZY20198016,AD18281079,AD18216004)+1 种基金the Natural Science Foundation of Hunan Province(2020JJ3014)Guangxi Colleges and Universities Key Laboratory of Intelligent Processing of Computer Images and Graphics(GIIP202001).
文摘The tradeoff between efficiency and model size of the convolutional neural network(CNN)is an essential issue for applications of CNN-based algorithms to diverse real-world tasks.Although deep learning-based methods have achieved significant improvements in image super-resolution(SR),current CNNbased techniques mainly contain massive parameters and a high computational complexity,limiting their practical applications.In this paper,we present a fast and lightweight framework,named weighted multi-scale residual network(WMRN),for a better tradeoff between SR performance and computational efficiency.With the modified residual structure,depthwise separable convolutions(DS Convs)are employed to improve convolutional operations’efficiency.Furthermore,several weighted multi-scale residual blocks(WMRBs)are stacked to enhance the multi-scale representation capability.In the reconstruction subnetwork,a group of Conv layers are introduced to filter feature maps to reconstruct the final high-quality image.Extensive experiments were conducted to evaluate the proposed model,and the comparative results with several state-of-the-art algorithms demonstrate the effectiveness of WMRN.
文摘The application of image super-resolution(SR)has brought significant assistance in the medical field,aiding doctors to make more precise diagnoses.However,solely relying on a convolutional neural network(CNN)for image SR may lead to issues such as blurry details and excessive smoothness.To address the limitations,we proposed an algorithm based on the generative adversarial network(GAN)framework.In the generator network,three different sizes of convolutions connected by a residual dense structure were used to extract detailed features,and an attention mechanism combined with dual channel and spatial information was applied to concentrate the computing power on crucial areas.In the discriminator network,using InstanceNorm to normalize tensors sped up the training process while retaining feature information.The experimental results demonstrate that our algorithm achieves higher peak signal-to-noise ratio(PSNR)and structural similarity index measure(SSIM)compared to other methods,resulting in an improved visual quality.
基金funded by State Key Laboratory for GeoMechanics and Deep Underground Engineering&Institute for Deep Underground Science and Engineering,Grant Number XD2021021BUCEA Post Graduate Innovation Project under Grant,Grant Number PG2023092.
文摘Rockburst is a phenomenon in which free surfaces are formed during excavation,which subsequently causes the sudden release of energy in the construction of mines and tunnels.Light rockburst only peels off rock slices without ejection,while severe rockburst causes casualties and property loss.The frequency and degree of rockburst damage increases with the excavation depth.Moreover,rockburst is the leading engineering geological hazard in the excavation process,and thus the prediction of its intensity grade is of great significance to the development of geotechnical engineering.Therefore,the prediction of rockburst intensity grade is one problem that needs to be solved urgently.By comprehensively considering the occurrence mechanism of rockburst,this paper selects the stress index(σθ/σc),brittleness index(σ_(c)/σ_(t)),and rock elastic energy index(Wet)as the rockburst evaluation indexes through the Spearman coefficient method.This overcomes the low accuracy problem of a single evaluation index prediction method.Following this,the BGD-MSR-DNN rockburst intensity grade prediction model based on batch gradient descent and a multi-scale residual deep neural network is proposed.The batch gradient descent(BGD)module is used to replace the gradient descent algorithm,which effectively improves the efficiency of the network and reduces the model training time.Moreover,the multi-scale residual(MSR)module solves the problem of network degradation when there are too many hidden layers of the deep neural network(DNN),thus improving the model prediction accuracy.The experimental results reveal the BGDMSR-DNN model accuracy to reach 97.1%,outperforming other comparable models.Finally,actual projects such as Qinling Tunnel and Daxiangling Tunnel,reached an accuracy of 100%.The model can be applied in mines and tunnel engineering to realize the accurate and rapid prediction of rockburst intensity grade.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.2023AH040149 and 2024AH051915)the Anhui Provincial Natural Science Foundation(Grant No.2208085MF168)+1 种基金the Science and Technology Innovation Tackle Plan Project of Maanshan(Grant No.2024RGZN001)the Scientific Research Fund Project of Anhui Medical University(Grant No.2023xkj122).
文摘Convolutional neural networks(CNNs)-based medical image segmentation technologies have been widely used in medical image segmentation because of their strong representation and generalization abilities.However,due to the inability to effectively capture global information from images,CNNs can easily lead to loss of contours and textures in segmentation results.Notice that the transformer model can effectively capture the properties of long-range dependencies in the image,and furthermore,combining the CNN and the transformer can effectively extract local details and global contextual features of the image.Motivated by this,we propose a multi-branch and multi-scale attention network(M2ANet)for medical image segmentation,whose architecture consists of three components.Specifically,in the first component,we construct an adaptive multi-branch patch module for parallel extraction of image features to reduce information loss caused by downsampling.In the second component,we apply residual block to the well-known convolutional block attention module to enhance the network’s ability to recognize important features of images and alleviate the phenomenon of gradient vanishing.In the third component,we design a multi-scale feature fusion module,in which we adopt adaptive average pooling and position encoding to enhance contextual features,and then multi-head attention is introduced to further enrich feature representation.Finally,we validate the effectiveness and feasibility of the proposed M2ANet method through comparative experiments on four benchmark medical image segmentation datasets,particularly in the context of preserving contours and textures.
基金supported by the National Natural Science Foundation of China(62272049,62236006,62172045)the Key Projects of Beijing Union University(ZKZD202301).
文摘In recent years,gait-based emotion recognition has been widely applied in the field of computer vision.However,existing gait emotion recognition methods typically rely on complete human skeleton data,and their accuracy significantly declines when the data is occluded.To enhance the accuracy of gait emotion recognition under occlusion,this paper proposes a Multi-scale Suppression Graph ConvolutionalNetwork(MS-GCN).TheMS-GCN consists of three main components:Joint Interpolation Module(JI Moudle),Multi-scale Temporal Convolution Network(MS-TCN),and Suppression Graph Convolutional Network(SGCN).The JI Module completes the spatially occluded skeletal joints using the(K-Nearest Neighbors)KNN interpolation method.The MS-TCN employs convolutional kernels of various sizes to comprehensively capture the emotional information embedded in the gait,compensating for the temporal occlusion of gait information.The SGCN extracts more non-prominent human gait features by suppressing the extraction of key body part features,thereby reducing the negative impact of occlusion on emotion recognition results.The proposed method is evaluated on two comprehensive datasets:Emotion-Gait,containing 4227 real gaits from sources like BML,ICT-Pollick,and ELMD,and 1000 synthetic gaits generated using STEP-Gen technology,and ELMB,consisting of 3924 gaits,with 1835 labeled with emotions such as“Happy,”“Sad,”“Angry,”and“Neutral.”On the standard datasets Emotion-Gait and ELMB,the proposed method achieved accuracies of 0.900 and 0.896,respectively,attaining performance comparable to other state-ofthe-artmethods.Furthermore,on occlusion datasets,the proposedmethod significantly mitigates the performance degradation caused by occlusion compared to other methods,the accuracy is significantly higher than that of other methods.
文摘In the field of image processing,the analysis of Synthetic Aperture Radar(SAR)images is crucial due to its broad range of applications.However,SAR images are often affected by coherent speckle noise,which significantly degrades image quality.Traditional denoising methods,typically based on filter techniques,often face challenges related to inefficiency and limited adaptability.To address these limitations,this study proposes a novel SAR image denoising algorithm based on an enhanced residual network architecture,with the objective of enhancing the utility of SAR imagery in complex electromagnetic environments.The proposed algorithm integrates residual network modules,which directly process the noisy input images to generate denoised outputs.This approach not only reduces computational complexity but also mitigates the difficulties associated with model training.By combining the Transformer module with the residual block,the algorithm enhances the network's ability to extract global features,offering superior feature extraction capabilities compared to CNN-based residual modules.Additionally,the algorithm employs the adaptive activation function Meta-ACON,which dynamically adjusts the activation patterns of neurons,thereby improving the network's feature extraction efficiency.The effectiveness of the proposed denoising method is empirically validated using real SAR images from the RSOD dataset.The proposed algorithm exhibits remarkable performance in terms of EPI,SSIM,and ENL,while achieving a substantial enhancement in PSNR when compared to traditional and deep learning-based algorithms.The PSNR performance is enhanced by over twofold.Moreover,the evaluation of the MSTAR SAR dataset substantiates the algorithm's robustness and applicability in SAR denoising tasks,with a PSNR of 25.2021 being attained.These findings underscore the efficacy of the proposed algorithm in mitigating speckle noise while preserving critical features in SAR imagery,thereby enhancing its quality and usability in practical scenarios.
基金supported by grants from The National Natural Science Foundation of China(12361104)Yunnan Fundamental Research Projects(202301AT070016,202401AT070036)+2 种基金the Youth Talent Program of Xingdian Talent Support Plan(XDYC-QNRC-2022-0514)the Yunnan Province International Joint Laboratory for Intelligent Integration and Application of Ethnic Multilingualism(202403AP140014)the Open Research Fund of Yunnan Key Laboratory of Statistical Modeling and Data Analysis,Yunnan University(SMDAYB2023004)。
文摘Objective N6-methyladenosine(m6A),the most prevalent epigenetic modification in eukaryotic RNA,plays a pivotal role in regulating cellular differentiation and developmental processes,with its dysregulation implicated in diverse pathological conditions.Accurate prediction of m6A sites is critical for elucidating their regulatory mechanisms and informing drug development.However,traditional experimental methods are time-consuming and costly.Although various computational approaches have been proposed,challenges remain in feature learning,predictive accuracy,and generalization.Here,we present m6A-PSRA,a dual-branch residual-network-based predictor that fully exploits RNA sequence information to enhance prediction performance and model generalization.Methods m6A-PSRA adopts a parallel dual-branch network architecture to comprehensively extract RNA sequence features via two independent pathways.The first branch applies one-hot encoding to transform the RNA sequence into a numerical matrix while strictly preserving positional information and sequence continuity.This ensures that the biological context conveyed by nucleotide order is retained.A bidirectional long short-term memory network(BiLSTM)then processes the encoded matrix,capturing both forward and backward dependencies between bases to resolve contextual correlations.The second branch employs a k-mer tokenization strategy(k=3),decomposing the sequence into overlapping 3-mer subsequences to capture local sequence patterns.A pre-trained Doc2vec model maps these subsequences into fixeddimensional vectors,reducing feature dimensionality while extracting latent global semantic information via context learning.Both branches integrate residual networks(ResNet)and a self-attention mechanism:ResNet mitigates vanishing gradients through skip connections,preserving feature integrity,while self-attention adaptively assigns weights to focus on sequence regions most relevant to methylation prediction.This synergy enhances both feature learning and generalization capability.Results Across 11 tissues from humans,mice,and rats,m6A-PSRA consistently outperformed existing methods in accuracy(ACC)and area under the curve(AUC),achieving>90%ACC and>95%AUC in every tissue tested,indicating strong cross-species and cross-tissue adaptability.Validation on independent datasets—including three human cell lines(MOLM1,HEK293,A549)and a long-sequence dataset(m6A_IND,1001 nt)—confirmed stable performance across varied biological contexts and sequence lengths.Ablation studies demonstrated that the dual-branch architecture,residual network,and self-attention mechanism each contribute critically to performance,with their combination reducing interference between pathways.Motif analysis revealed an enrichment of m6A sites in guanine(G)and cytosine(C),consistent with known regulatory patterns,supporting the model’s biological plausibility.Conclusion m6A-PSRA effectively captures RNA sequence features,achieving high prediction accuracy and robust generalization across tissues and species,providing an efficient computational tool for m6A methylation site prediction.
基金supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI under Grant JP22H03643Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)under Grant JPMJSP2145JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation under Grant JPMJFS2115.
文摘Residual neural network (ResNet) is a powerful neural network architecture that has proven to be excellent in extracting spatial and channel-wise information of images. ResNet employs a residual learning strategy that maps inputs directly to outputs, making it less difficult to optimize. In this paper, we incorporate differential information into the original residual block to improve the representative ability of the ResNet, allowing the modified network to capture more complex and metaphysical features. The proposed DFNet preserves the features after each convolutional operation in the residual block, and combines the feature maps of different levels of abstraction through the differential information. To verify the effectiveness of DFNet on image recognition, we select six distinct classification datasets. The experimental results show that our proposed DFNet has better performance and generalization ability than other state-of-the-art variants of ResNet in terms of classification accuracy and other statistical analysis.
基金the National Natural Science Foundation of China(No.62266025)。
文摘Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete vessel segmentation and poor continuity.In this study,we propose CT-MFENet to address the aforementioned issues.First,the use of context transformer(CT)allows for the integration of contextual feature information,which helps establish the connection between pixels and solve the problem of incomplete vessel continuity.Second,multi-scale dense residual networks are used instead of traditional CNN to address the issue of inadequate local feature extraction when the model encounters vessels at multiple scales.In the decoding stage,we introduce a local-global fusion module.It enhances the localization of vascular information and reduces the semantic gap between high-and low-level features.To address the class imbalance in retinal images,we propose a hybrid loss function that enhances the segmentation ability of the model for topological structures.We conducted experiments on the publicly available DRIVE,CHASEDB1,STARE,and IOSTAR datasets.The experimental results show that our CT-MFENet performs better than most existing methods,including the baseline U-Net.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金supported by the National Natural Science Foundation of China(Grant No.11971411)。
文摘This paper introduces a novel numerical method based on an energy-minimizing normalized residual network(EMNorm Res Net)to compute the ground-state solution of Bose-Einstein condensates at zero or low temperatures.Starting from the three-dimensional Gross-Pitaevskii equation(GPE),we reduce it to the 1D and 2D GPEs because of the radial symmetry and cylindrical symmetry.The ground-state solution is formulated by minimizing the energy functional under constraints,which is directly solved using the EM-Norm Res Net approach.The paper provides detailed solutions for the ground states in 1D,2D(with radial symmetry),and 3D(with cylindrical symmetry).We use the Thomas-Fermi approximation as the target function to pre-train the neural network.Then,the formal network is trained using the energy minimization method.In contrast to traditional numerical methods,our neural network approach introduces two key innovations:(i)a novel normalization technique designed for high-dimensional systems within an energy-based loss function;(ii)improved training efficiency and model robustness by incorporating gradient stabilization techniques into residual networks.Extensive numerical experiments validate the method's accuracy across different spatial dimensions.
基金supported by the Xiamen Science and Technology Subsidy Project(No.2023CXY0318).
文摘Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance.
基金supported by National Natural Science Foundation of China(62473341)Key Research and Development Special Project of Henan Province(221111210500)Key Research and Development Special Project of Henan Province(242102211071,242102210142,232102211053).
文摘The rapid development and widespread adoption of Internet technology have significantly increased Internet traffic,highlighting the growing importance of network security.Intrusion Detection Systems(IDS)are essential for safeguarding network integrity.To address the low accuracy of existing intrusion detection models in identifying network attacks,this paper proposes an intrusion detection method based on the fusion of Spatial Attention mechanism and Residual Neural Network(SA-ResNet).Utilizing residual connections can effectively capture local features in the data;by introducing a spatial attention mechanism,the global dependency relationships of intrusion features can be extracted,enhancing the intrusion recognition model’s focus on the global features of intrusions,and effectively improving the accuracy of intrusion recognition.The proposed model in this paper was experimentally verified on theNSL-KDD dataset.The experimental results showthat the intrusion recognition accuracy of the intrusion detection method based on SA-ResNet has reached 99.86%,and its overall accuracy is 0.41% higher than that of traditional Convolutional Neural Network(CNN)models.
文摘In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks.
基金supported by the Intelligent System Research Group(ISysRG)supported by Universitas Sriwijaya funded by the Competitive Research 2024.
文摘Handling missing data accurately is critical in clinical research, where data quality directly impacts decision-making and patient outcomes. While deep learning (DL) techniques for data imputation have gained attention, challenges remain, especially when dealing with diverse data types. In this study, we introduce a novel data imputation method based on a modified convolutional neural network, specifically, a Deep Residual-Convolutional Neural Network (DRes-CNN) architecture designed to handle missing values across various datasets. Our approach demonstrates substantial improvements over existing imputation techniques by leveraging residual connections and optimized convolutional layers to capture complex data patterns. We evaluated the model on publicly available datasets, including Medical Information Mart for Intensive Care (MIMIC-III and MIMIC-IV), which contain critical care patient data, and the Beijing Multi-Site Air Quality dataset, which measures environmental air quality. The proposed DRes-CNN method achieved a root mean square error (RMSE) of 0.00006, highlighting its high accuracy and robustness. We also compared with Low Light-Convolutional Neural Network (LL-CNN) and U-Net methods, which had RMSE values of 0.00075 and 0.00073, respectively. This represented an improvement of approximately 92% over LL-CNN and 91% over U-Net. The results showed that this DRes-CNN-based imputation method outperforms current state-of-the-art models. These results established DRes-CNN as a reliable solution for addressing missing data.
基金supported by Chongqing University of Posts and Telecommunications Ph.D.Innovative Talents Project(Grant No.BYJS202106)Chongqing Postgraduate Research Innovation Project(Grant No.CYB21203).
文摘Speech Emotion Recognition(SER)has received widespread attention as a crucial way for understanding human emotional states.However,the impact of irrelevant information on speech signals and data sparsity limit the development of SER system.To address these issues,this paper proposes a framework that incorporates the Attentive Mask Residual Network(AM-ResNet)and the self-supervised learning model Wav2vec 2.0 to obtain AM-ResNet features and Wav2vec 2.0 features respectively,together with a cross-attention module to interact and fuse these two features.The AM-ResNet branch mainly consists of maximum amplitude difference detection,mask residual block,and an attention mechanism.Among them,the maximum amplitude difference detection and the mask residual block act on the pre-processing and the network,respectively,to reduce the impact of silent frames,and the attention mechanism assigns different weights to unvoiced and voiced speech to reduce redundant emotional information caused by unvoiced speech.In the Wav2vec 2.0 branch,this model is introduced as a feature extractor to obtain general speech features(Wav2vec 2.0 features)through pre-training with a large amount of unlabeled speech data,which can assist the SER task and cope with data sparsity problems.In the cross-attention module,AM-ResNet features and Wav2vec 2.0 features are interacted with and fused to obtain the cross-fused features,which are used to predict the final emotion.Furthermore,multi-label learning is also used to add ambiguous emotion utterances to deal with data limitations.Finally,experimental results illustrate the usefulness and superiority of our proposed framework over existing state-of-the-art approaches.
基金supported by the National Natural Science Foundation of China(Grant No.92152301)the National Key Research and Development Program of China(Grant No.2022YFB4300200)the Shaanxi Provincial Key Research and Development Program(Grant No.2023-ZDLGY-27).
文摘Physics-informed neural networks(PINNs)have shown remarkable prospects in solving the forward and inverse problems involving partial differential equations(PDEs).The method embeds PDEs into the neural network by calculating the PDE loss at a set of collocation points,providing advantages such as meshfree and more convenient adaptive sampling.However,when solving PDEs using nonuniform collocation points,PINNs still face challenge regarding inefficient convergence of PDE residuals or even failure.In this work,we first analyze the ill-conditioning of the PDE loss in PINNs under nonuniform collocation points.To address the issue,we define volume weighting residual and propose volume weighting physics-informed neural networks(VW-PINNs).Through weighting the PDE residuals by the volume that the collocation points occupy within the computational domain,we embed explicitly the distribution characteristics of collocation points in the loss evaluation.The fast and sufficient convergence of the PDE residuals for the problems involving nonuniform collocation points is guaranteed.Considering the meshfree characteristics of VW-PINNs,we also develop a volume approximation algorithm based on kernel density estimation to calculate the volume of the collocation points.We validate the universality of VW-PINNs by solving the forward problems involving flow over a circular cylinder and flow over the NACA0012 airfoil under different inflow conditions,where conventional PINNs fail.By solving the Burgers’equation,we verify that VW-PINNs can enhance the efficiency of existing the adaptive sampling method in solving the forward problem by three times,and can reduce the relative L 2 error of conventional PINNs in solving the inverse problem by more than one order of magnitude.
基金supported by the National Key Scientific Instrument and Equipment Development Project(61827801).
文摘The fifth-generation (5G) communication requires a highly accurate estimation of the channel state information (CSI)to take advantage of the massive multiple-input multiple-output(MIMO) system. However, traditional channel estimation methods do not always yield reliable estimates. The methodology of this paper consists of deep residual shrinkage network (DRSN)neural network-based method that is used to solve this problem.Thus, the channel estimation approach, based on DRSN with its learning ability of noise-containing data, is first introduced. Then,the DRSN is used to train the noise reduction process based on the results of the least square (LS) channel estimation while applying the pilot frequency subcarriers, where the initially estimated subcarrier channel matrix is considered as a three-dimensional tensor of the DRSN input. Afterward, a mixed signal to noise ratio (SNR) training data strategy is proposed based on the learning ability of DRSN under different SNRs. Moreover, a joint mixed scenario training strategy is carried out to test the multi scenarios robustness of DRSN. As for the findings, the numerical results indicate that the DRSN method outperforms the spatial-frequency-temporal convolutional neural networks (SF-CNN)with similar computational complexity and achieves better advantages in the full SNR range than the minimum mean squared error (MMSE) estimator with a limited dataset. Moreover, the DRSN approach shows robustness in different propagation environments.