期刊文献+

CT-MFENet:Context Transformer and Multi-Scale Feature Extraction Network via Global-Local Features Fusion for Retinal Vessels Segmentation

原文传递
导出
摘要 Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete vessel segmentation and poor continuity.In this study,we propose CT-MFENet to address the aforementioned issues.First,the use of context transformer(CT)allows for the integration of contextual feature information,which helps establish the connection between pixels and solve the problem of incomplete vessel continuity.Second,multi-scale dense residual networks are used instead of traditional CNN to address the issue of inadequate local feature extraction when the model encounters vessels at multiple scales.In the decoding stage,we introduce a local-global fusion module.It enhances the localization of vascular information and reduces the semantic gap between high-and low-level features.To address the class imbalance in retinal images,we propose a hybrid loss function that enhances the segmentation ability of the model for topological structures.We conducted experiments on the publicly available DRIVE,CHASEDB1,STARE,and IOSTAR datasets.The experimental results show that our CT-MFENet performs better than most existing methods,including the baseline U-Net.
作者 SHAO Dangguo YANG Yuanbiao MA Lei YI Sanli 邵党国;杨元彪;马磊;易三莉
出处 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期668-682,共15页 上海交通大学学报(英文版)
基金 the National Natural Science Foundation of China(No.62266025)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部