期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于Inception-BiGRU和注意力机制的频谱感知方法研究
1
作者 殷晓虎 张安熠 +1 位作者 张珂珂 田冲 《电子测量技术》 北大核心 2025年第6期90-98,共9页
频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力... 频谱感知是缓解频谱资源短缺的关键技术之一,其中智能频谱感知已成为当前研究的热点方向。针对现有频谱感知方法对信号特征提取不充分以及在低信噪比下频谱感知效果不佳的问题,提出一种由Inception模块、双向门控循环单元、时间注意力机制和全连接层网络组成的频谱感知混合模型。首先,Inception模块对接收到的I/Q信号进行多尺度空间特征的提取;然后,采用双向门控循环单元获取信号的时间序列特征,并通过时间注意力机制强化重要时序特征;最后,全连接层网络将提取到的特征映射到频谱状态的分类空间完成分类识别。实验结果表明,本文方法与多种现有频谱感知方法相比显著提升了感知性能,模型的整体检测准确率达到84.55%,当信噪比为-20 dB时,该方法的感知误差为24%;且对多种调制类型的无线电信号具有较好的适应性。所提方法无需依赖任何先验信息,在低信噪比和复杂无线电环境下展现出较强的鲁棒性,实现了感知性能与模型复杂度的有效平衡,为智能频谱感知提供了一种新的解决方案。 展开更多
关键词 频谱感知 深度学习 inception模块 双向门控循环单元 时间注意力机制
原文传递
Multi-Scale Convolutional Gated Recurrent Unit Networks for Tool Wear Prediction in Smart Manufacturing 被引量:3
2
作者 Weixin Xu Huihui Miao +3 位作者 Zhibin Zhao Jinxin Liu Chuang Sun Ruqiang Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期130-145,共16页
As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symboli... As an integrated application of modern information technologies and artificial intelligence,Prognostic and Health Management(PHM)is important for machine health monitoring.Prediction of tool wear is one of the symbolic applications of PHM technology in modern manufacturing systems and industry.In this paper,a multi-scale Convolutional Gated Recurrent Unit network(MCGRU)is proposed to address raw sensory data for tool wear prediction.At the bottom of MCGRU,six parallel and independent branches with different kernel sizes are designed to form a multi-scale convolutional neural network,which augments the adaptability to features of different time scales.These features of different scales extracted from raw data are then fed into a Deep Gated Recurrent Unit network to capture long-term dependencies and learn significant representations.At the top of the MCGRU,a fully connected layer and a regression layer are built for cutting tool wear prediction.Two case studies are performed to verify the capability and effectiveness of the proposed MCGRU network and results show that MCGRU outperforms several state-of-the-art baseline models. 展开更多
关键词 Tool wear prediction multi-scale Convolutional neural networks Gated recurrent unit
在线阅读 下载PDF
基于Inception-GRU模型的泄洪建筑物结构安全状态智能识别
3
作者 刘昉 陈浩东 +1 位作者 梁超 庞博慧 《人民黄河》 CAS 北大核心 2022年第12期101-105,111,共6页
为保障水利枢纽的泄洪安全,以Inception模块为主体结构,结合门控循环单元(GRU)和高效通道注意力(ECA)机制,提出了Inception-GRU深度神经网络模型,通过采集的多测点泄洪振动数据,智能识别泄洪建筑物的结构安全状态。用工程数据进行测试,... 为保障水利枢纽的泄洪安全,以Inception模块为主体结构,结合门控循环单元(GRU)和高效通道注意力(ECA)机制,提出了Inception-GRU深度神经网络模型,通过采集的多测点泄洪振动数据,智能识别泄洪建筑物的结构安全状态。用工程数据进行测试,结果表明,该模型能以97.15%的准确率完成结构安全智能识别任务,准确率较Inception模型、CNN-GRU模型、Inception-LSTM模型分别提高6.90、5.69、2.03个百分点。对泄洪振动数据进行数据预处理后,以三维矩阵的形式输入网络,可以有效降低模型参数量,提高模型效率。 展开更多
关键词 深度神经网络 结构安全 智能识别 inception模型 门控循环单元
在线阅读 下载PDF
基于小波时频分析和Inception-BiGRU模型的盾构滚刀偏磨故障诊断 被引量:7
4
作者 樊翔翔 项载毓 +2 位作者 孙瑞雪 张敏 莫继良 《振动与冲击》 EI CSCD 北大核心 2023年第15期232-240,共9页
盾构机(tunnel boring machine, TBM)滚刀在重载、冲击和地质复杂的环境中服役,极易发生偏磨等失效故障,因此,掌握滚刀的磨损状态、实现基于数据驱动的滚刀偏磨故障诊断并指导滚刀的运维尤为重要。提出了一种基于小波时频分析和Inceptio... 盾构机(tunnel boring machine, TBM)滚刀在重载、冲击和地质复杂的环境中服役,极易发生偏磨等失效故障,因此,掌握滚刀的磨损状态、实现基于数据驱动的滚刀偏磨故障诊断并指导滚刀的运维尤为重要。提出了一种基于小波时频分析和Inception-BiGRU模型的诊断模型以提高滚刀偏磨故障诊断效率。以滚刀为研究对象,在多功能缩比滚刀试验台上进行直线破岩试验,采集滚刀破岩时产生的振动加速度信号。采用连续小波变换获取反映振动信号时频域特征的小波时频图,进而以Inception模块的不同大小卷积核自适应地提取时频图中的多尺度空间信息,并通过添加双向门控循环单元(bidirectional gated recurrent units, BiGRU)使模型可更为准确地学习到时频图中丰富的时序依赖性关系,模型的超参数由贝叶斯优化算法确定。4种不同偏磨程度滚刀的诊断试验表明所提模型能够有效提取时频图中滚刀的偏磨特征并完成滚刀偏磨状态识别,实现端到端的盾构滚刀偏磨故障诊断。模型平均诊断准确率可达到98.5%,其诊断准确度和稳定性均优于其他常用算法,证明了所提方法的可行性。 展开更多
关键词 盾构机(TBM) 滚刀 偏磨故障诊断 小波时频分析 inception模块 双向门控循环单元(BiGRU)
在线阅读 下载PDF
基于Inception模块与改进GRU的混凝土坝变形预测模型 被引量:4
5
作者 宋蕾 雷兆星 《水利水电科技进展》 CSCD 北大核心 2024年第6期100-105,共6页
针对现有基于经典线性回归方法或浅层机器学习技术的混凝土坝变形预测模型在提取环境量因子复杂特征与学习变形-环境量长期依赖关系上的不足,提出了基于Inception模块与自注意力机制改进的门控循环单元(GRU)的混凝土坝变形预测模型。该... 针对现有基于经典线性回归方法或浅层机器学习技术的混凝土坝变形预测模型在提取环境量因子复杂特征与学习变形-环境量长期依赖关系上的不足,提出了基于Inception模块与自注意力机制改进的门控循环单元(GRU)的混凝土坝变形预测模型。该模型综合运用了Inception模块的特征提取能力和GRU的长期依赖性学习能力,可从不同尺度提取大坝环境量监测序列的特征并进行大坝变形的长期预测,同时通过引入注意力机制,降低了学习多种环境因子特征时的模型过拟合风险。某特高混凝土双曲拱坝工程实例验证结果表明,该模型在典型监测点的预测性能都优于其他常用的浅层或深度学习模型,可用于混凝土坝变形预测。 展开更多
关键词 混凝土坝 变形预测 深度学习 inception模块 门控循环单元
在线阅读 下载PDF
Landslide susceptibility prediction using slope unit-based machine learning models considering the heterogeneity of conditioning factors 被引量:12
6
作者 Zhilu Chang Filippo Catani +4 位作者 Faming Huang Gengzhe Liu Sansar Raj Meena Jinsong Huang Chuangbing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1127-1143,共17页
To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method propose... To perform landslide susceptibility prediction(LSP),it is important to select appropriate mapping unit and landslide-related conditioning factors.The efficient and automatic multi-scale segmentation(MSS)method proposed by the authors promotes the application of slope units.However,LSP modeling based on these slope units has not been performed.Moreover,the heterogeneity of conditioning factors in slope units is neglected,leading to incomplete input variables of LSP modeling.In this study,the slope units extracted by the MSS method are used to construct LSP modeling,and the heterogeneity of conditioning factors is represented by the internal variations of conditioning factors within slope unit using the descriptive statistics features of mean,standard deviation and range.Thus,slope units-based machine learning models considering internal variations of conditioning factors(variant slope-machine learning)are proposed.The Chongyi County is selected as the case study and is divided into 53,055 slope units.Fifteen original slope unit-based conditioning factors are expanded to 38 slope unit-based conditioning factors through considering their internal variations.Random forest(RF)and multi-layer perceptron(MLP)machine learning models are used to construct variant Slope-RF and Slope-MLP models.Meanwhile,the Slope-RF and Slope-MLP models without considering the internal variations of conditioning factors,and conventional grid units-based machine learning(Grid-RF and MLP)models are built for comparisons through the LSP performance assessments.Results show that the variant Slopemachine learning models have higher LSP performances than Slope-machine learning models;LSP results of variant Slope-machine learning models have stronger directivity and practical application than Grid-machine learning models.It is concluded that slope units extracted by MSS method can be appropriate for LSP modeling,and the heterogeneity of conditioning factors within slope units can more comprehensively reflect the relationships between conditioning factors and landslides.The research results have important reference significance for land use and landslide prevention. 展开更多
关键词 Landslide susceptibility prediction(LSP) Slope unit multi-scale segmentation method(MSS) Heterogeneity of conditioning factors Machine learning models
在线阅读 下载PDF
Elastic Predictions of 3D Orthogonal Woven Composites Using Micro/meso-scale Repeated Unit Cell Models
7
作者 JIA Xiwen GAO Limin +2 位作者 ZHANG Tian ZHANG Fa WANG Yan 《Journal of Donghua University(English Edition)》 EI CAS 2019年第4期390-398,共9页
This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yar... This presentation predicts the elastic properties of three-dimensional(3D)orthogonal woven composite(3DOWC)by finite element analysis based on micro/meso repeated unit cell(RUC)models.First,the properties of fiber yarn are obtained by analysis on a micro-scale RUC model assuming fibers in a hexagonal distribution pattern in the polymer matrix.Then a full thickness meso-scale RUC model including weft yarns,warp yarns,Z-yarns and pure resin zones is established and full stiffness matrix of the 3DOWC including the in-plane and flexural constants are predicted.For thick 3DOWC with large number of weft,warp layers,an alternative analysis method is proposed in which an inner meso-RUC and a surface meso-RUC are established,respectively.Then the properties of 3DOWC are deduced based on laminate theory and properties of the inner and surface layers.The predicted results by the above two alternative methods are in good experimental agreement. 展开更多
关键词 composite multi-scale analysis repeated unit cell model FINITE ELEMENT method
在线阅读 下载PDF
Using Hybrid Penalty and Gated Linear Units to Improve Wasserstein Generative Adversarial Networks for Single-Channel Speech Enhancement
8
作者 Xiaojun Zhu Heming Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2155-2172,共18页
Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as con... Recently,speech enhancement methods based on Generative Adversarial Networks have achieved good performance in time-domain noisy signals.However,the training of Generative Adversarial Networks has such problems as convergence difficulty,model collapse,etc.In this work,an end-to-end speech enhancement model based on Wasserstein Generative Adversarial Networks is proposed,and some improvements have been made in order to get faster convergence speed and better generated speech quality.Specifically,in the generator coding part,each convolution layer adopts different convolution kernel sizes to conduct convolution operations for obtaining speech coding information from multiple scales;a gated linear unit is introduced to alleviate the vanishing gradient problem with the increase of network depth;the gradient penalty of the discriminator is replaced with spectral normalization to accelerate the convergence rate of themodel;a hybrid penalty termcomposed of L1 regularization and a scale-invariant signal-to-distortion ratio is introduced into the loss function of the generator to improve the quality of generated speech.The experimental results on both TIMIT corpus and Tibetan corpus show that the proposed model improves the speech quality significantly and accelerates the convergence speed of the model. 展开更多
关键词 Speech enhancement generative adversarial networks hybrid penalty gated linear units multi-scale convolution
在线阅读 下载PDF
基于INC4-YOLO的菌落计数方法研究
9
作者 陈教料 王振舵 潘立 《高技术通讯》 北大核心 2025年第8期901-910,共10页
针对菌落图像中小菌落易漏检的问题,提出了一种基于INC4-YOLO(you only look once)的计数方法,实现精准的菌落计数。采用带残差结构的Inception模块(Inception module with residual connection,IncRes)替换YOLOv5骨干网络中的Bottlenec... 针对菌落图像中小菌落易漏检的问题,提出了一种基于INC4-YOLO(you only look once)的计数方法,实现精准的菌落计数。采用带残差结构的Inception模块(Inception module with residual connection,IncRes)替换YOLOv5骨干网络中的Bottleneck模块,以增强图像特征提取能力。从网络的浅层特征中引出一个小目标检测头,以增强算法在训练过程中对小菌落的注意力。分别在标注微生物自动识别数据集(annotated germs for automated recognition,AGAR)和真实菌落计数场景下对INC4-YOLO进行计数性能测试。实验结果表明,在AGAR测试集中,提出的算法在小菌落的平均百分比绝对值计数误差(mean absolute percentage error,MAPE)比其他先进目标检测算法降低了2%;真实菌落计数场景下,INC4-YOLO的MAPE相比YOLOv5降低了7%,表明该算法可帮助菌落计数设备实现精准计数。 展开更多
关键词 菌落计数 目标检测 改进YOLOv5 inception模块 小目标检测
在线阅读 下载PDF
Multi-Scale Fusion Model Based on Gated Recurrent Unit for Enhancing Prediction Accuracy of State-of-Charge in Battery Energy Storage Systems 被引量:1
10
作者 Hao Liu Fengwei Liang +2 位作者 Tianyu Hu Jichao Hong Huimin Ma 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第2期405-414,共10页
Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale featu... Accurate prediction of the state-of-charge(SOC)of battery energy storage system(BESS)is critical for its safety and lifespan in electric vehicles.To overcome the imbalance of existing methods between multi-scale feature fusion and global feature extraction,this paper introduces a novel multi-scale fusion(MSF)model based on gated recurrent unit(GRU),which is specifically designed for complex multi-step SOC prediction in practical BESSs.Pearson correlation analysis is first employed to identify SOC-related parameters.These parameters are then input into a multi-layer GRU for point-wise feature extraction.Concurrently,the parameters undergo patching before entering a dual-stage multi-layer GRU,thus enabling the model to capture nuanced information across varying time intervals.Ultimately,by means of adaptive weight fusion and a fully connected network,multi-step SOC predictions are rendered.Following extensive validation over multiple days,it is illustrated that the proposed model achieves an absolute error of less than 1.5%in real-time SOC prediction. 展开更多
关键词 Electric vehicle battery energy storage system(BESS) state-of-charge(SOC)prediction gated recurrent unit(GRU) multi-scale fusion(MSF).
原文传递
基于注意力机制的INC-GRU人体活动识别模型
11
作者 张芷龙 王力 《科学技术与工程》 北大核心 2025年第26期11230-11236,共7页
随着外骨骼技术的不断发展,人体活动识别技术也受到越来越多的关注,在医疗、工业和人工智能等方面应用广泛。目前,许多机器学习算法已经可以通过传感器数据实现对人体活动的识别,并取得了较好的结果。传统机器学习算法受特征提取的影响... 随着外骨骼技术的不断发展,人体活动识别技术也受到越来越多的关注,在医疗、工业和人工智能等方面应用广泛。目前,许多机器学习算法已经可以通过传感器数据实现对人体活动的识别,并取得了较好的结果。传统机器学习算法受特征提取的影响较大,为了解决上述问题,提出了一种具有注意力机制的INC-GRU模型,该模型使用Inception网络与CBAM模块用于空间特征提取部分,采用门控循环单元(gated recurrent units,GRU)和注意力机制用于时间特征提取部分,有效地利用了时间序列数据中的空间和时间信息,注意力机制的加入使模型可以为每一个数据添加不同的权重,让模型选择性的关注关键数据。所提出的模型分别在UCI-HAR和WISDM数据集上进行了实验,F 1分数分别为96.64%和97.92%。通过与一些现有的模型进行比较分析,证明了本文模型的优越性。 展开更多
关键词 人体活动识别 inception网络 门控循环单元 注意力机制
在线阅读 下载PDF
一种预测驾驶注意力的多尺度注意力模型
12
作者 蒋超 郜东瑞 +1 位作者 李芃锐 赵长名 《软件导刊》 2025年第4期18-24,共7页
近年来,许多研究致力于利用EEG与EOG多模态数据预测驾驶注意力,但有效融合这两种模态数据仍是一项充满挑战的任务。为此,提出一个基于多模态的多尺度通道注意力回归模型(MMCAR-Net)预测驾驶注意力。首先,通过多尺度感知单元(Multi-Scale... 近年来,许多研究致力于利用EEG与EOG多模态数据预测驾驶注意力,但有效融合这两种模态数据仍是一项充满挑战的任务。为此,提出一个基于多模态的多尺度通道注意力回归模型(MMCAR-Net)预测驾驶注意力。首先,通过多尺度感知单元(Multi-Scale Inception)从EEG、EOG模态数据中分别提取多尺度特征;其次,在多个尺度上有序合并EEG与EOG特征以增强融合特征的多样性;最后,引入多尺度通道注意力机制为多尺度特征赋予差异化权重,以强化与注意力预测相关的特征,提升模型对驾驶注意力相关特征的敏感性和表达能力。在SEED-VIG数据集上的实验表明,所提模型在个体内实验组中取得的PCC与RMSE分别为0.959和0.064,在跨被试实验组中对应数值为0.892和0.112。 展开更多
关键词 驾驶注意力预测 多尺度感知单元 多尺度通道注意力机制 特征融合
在线阅读 下载PDF
利用深度学习的HEVC帧内编码单元快速划分算法 被引量:6
13
作者 易清明 林成思 石敏 《小型微型计算机系统》 CSCD 北大核心 2021年第2期368-373,共6页
新一代视频编码标准高效视频编码(High Efficiency Video Coding,HEVC)中编码单元(Coding Unit,CU)大小不同的特性使得编码效率得到显著提升,但同时带来了极高的计算复杂度.为了去除CU划分中多余的计算从而降低编码复杂度,本文提出了一... 新一代视频编码标准高效视频编码(High Efficiency Video Coding,HEVC)中编码单元(Coding Unit,CU)大小不同的特性使得编码效率得到显著提升,但同时带来了极高的计算复杂度.为了去除CU划分中多余的计算从而降低编码复杂度,本文提出了一种利用深度学习的编码单元快速划分算法.首先使用原始视频亮度块及编码信息建立了一个HEVC中CU划分的数据库,用于接下来本文深度学习神经网络的训练.然后,为了更好地贴合编码单元划分的层级结构,本文提出了一种基于Inception模块的神经网络结构,使之内嵌于HEVC编码框架中对编码单元的划分进行提前预测,有效地去除了All Intra配置下中冗余的CU划分计算.实验结果表明,本文提出的算法与HEVC官方测试模型(HM16.12)相比,编码时间平均降低了61.31%,而BD-BR与BD-PSNR仅为1.86%和-0.13dB. 展开更多
关键词 HEVC 编码单元划分 深度学习 inception模块
在线阅读 下载PDF
Inception point of air entrainment over stepped spillways 被引量:3
14
作者 WU Jian-hua ZHANG Bin MA Fei 《Journal of Hydrodynamics》 SCIE EI CSCD 2013年第1期91-96,共6页
The location of the inception point of the air entrainment directly affects the energy dissipation ratio, the cavitation damage control, and the training wall height designs for a stepped spillway and a stilling basin... The location of the inception point of the air entrainment directly affects the energy dissipation ratio, the cavitation damage control, and the training wall height designs for a stepped spillway and a stilling basin. In this paper, the boundary layer theory of plates is used to predict the location of the inception point of the air entrainment over the stepped spillways by assuming the steps on the spillways as a kind of roughness. An empirical formula is presented based on the physical model experiments, with the maximum error less than 1% except at one point where the error is 1.6%, as compared to the experimental data. Meanwhile, it is shown that the location of the inception point of the air entrainment for the stepped spillway is much nearer to the top of the spillway than that for a smooth spillways, which explains why the high ratio of the energy dissipation is provided for the stepped spillway. 展开更多
关键词 air entrainment CAVITATION energy dissipation inception point stepped spillway unit discharge
原文传递
Multi-scale HPC system for multi-scale discrete simulation—Development and application of a supercomputer with 1 Petaflops peak performance in single precision 被引量:19
15
作者 Feiguo Chen Wei Ge Li Guo Xianfeng He Bo Li Jinghai Li Xipeng Li Xiaowei Wang Xiaolong Yuan 《Particuology》 SCIE EI CAS CSCD 2009年第4期332-335,共4页
A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designin... A supercomputer with 1.0 Petaflops peak performance in single precision, designed and established by Institute of Process Engineering, Chinese Academy of Sciences, is introduced in this brief communication. A designing philosophy utilizing the similarity between hardware, software and the problems to be solved is embodied, based on the multi-scale method and discrete simulation approaches developed at Institute of Process Engineering (IPE) and implemented in a graphic processing unit (GPU)-based hybrid computing mode. The preliminary applications of this machine in areas of multi-phase flow, molecular dynamics and so on are reported, demonstrating the supercomputer as a paradigm of green computation in new architecture. 展开更多
关键词 High-performance computing (HPC) Graphic processing unit (GPU) Lattice Boltzmann method Molecular dynamics Multi-phase flow multi-scale method Particle method
原文传递
Sika Deer Behavior Recognition Based on Machine Vision 被引量:1
16
作者 He Gong Mingwang Deng +6 位作者 Shijun Li Tianli Hu Yu Sun Ye Mu Zilian Wang Chang Zhang Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2022年第12期4953-4969,共17页
With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for ... With the increasing intensive and large-scale development of the sika deer breeding industry,it is crucial to assess the health status of the sika deer by monitoring their behaviours.A machine vision-based method for the behaviour recognition of sika deer is proposed in this paper.Google Inception Net(GoogLeNet)is used to optimise the model in this paper.First,the number of layers and size of the model were reduced.Then,the 5×5 convolution was changed to two 3×3 convolutions,which reduced the parameters and increased the nonlinearity of the model.A 5×5 convolution kernel was used to replace the original convolution for extracting coarse-grained features and improving the model’s extraction ability.A multi-scale module was added to the model to enhance the multi-faceted feature extraction capability of the model.Simultaneously,the Squeeze-and-Excitation Networks(SE-Net)module was included to increase the channel’s attention and improve the model’s accuracy.The dataset’s images were rotated to reduce overfitting.For image rotation,the angle wasmultiplied by 30°to obtain the dataset enhanced by rotation operations of 30°,60°,90°,120°and 150°.The experimental results showed that the recognition rate of this model in the behaviour of sika deer was 98.92%.Therefore,the model presented in this paper can be applied to the behaviour recognition of sika deer.The results will play an essential role in promoting animal behaviour recognition technology and animal health monitoring management. 展开更多
关键词 Behaviour recognition SE-Net module multi-scale module improved inception module
在线阅读 下载PDF
A Robust Automated Framework for Classification of CT Covid-19 Images Using MSI-ResNet 被引量:1
17
作者 Aghila Rajagopal Sultan Ahmad +3 位作者 Sudan Jha Ramachandran Alagarsamy Abdullah Alharbi Bader Alouffi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3215-3229,共15页
Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological i... Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological images,auto-mated COVID-19 diagnosis techniques are needed.The enhancement of AI(Artificial Intelligence)has been focused in previous research,which uses X-ray images for detecting COVID-19.The most common symptoms of COVID-19 are fever,dry cough and sore throat.These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier.Since medical imaging is not suggested recently in Canada for critical COVID-19 diagnosis,computer-aided systems are implemented for the early identification of COVID-19,which aids in noticing the disease progression and thus decreases the death rate.Here,a deep learning-based automated method for the extraction of features and classi-fication is enhanced for the detection of COVID-19 from the images of computer tomography(CT).The suggested method functions on the basis of three main pro-cesses:data preprocessing,the extraction of features and classification.This approach integrates the union of deep features with the help of Inception 14 and VGG-16 models.At last,a classifier of Multi-scale Improved ResNet(MSI-ResNet)is developed to detect and classify the CT images into unique labels of class.With the support of available open-source COVID-CT datasets that consists of 760 CT pictures,the investigational validation of the suggested method is estimated.The experimental results reveal that the proposed approach offers greater performance with high specificity,accuracy and sensitivity. 展开更多
关键词 Covid-19 CT images multi-scale improved ResNet AI inception 14 and VGG-16 models
在线阅读 下载PDF
基于Faster-RCNN算法的轻量化改进及其在沙滩废弃物检测中的应用 被引量:6
18
作者 龚圣斌 王少杰 +3 位作者 侯亮 张荣辉 林晓涵 吴彬云 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第2期253-261,共9页
由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积... 由于背景环境复杂,检测物体易受部分遮挡、天气以及光线变化等因素的影响,传统目标检测方法存在提取特征难、检测准确率低、检测耗时长等缺陷.为了改善传统目标检测方法存在的缺陷,实现快速准确的目标检测,提出了一种基于快速区域卷积神经网络(faster regions with convolutional neural network,Faster-RCNN)算法的轻量化改进方法,即针对算法Inception-V2特征提取网络进行轻量化改进,并以带泄露线性整流(leaky rectified linear unit,Leaky ReLU)作为激活函数,解决使用线性整流(rectified linear unit,ReLU)激活函数存在的神经元输入为负数时输出为0的问题.基于上述改进方法,选择沙滩废弃物的检测为案例以验证方法的有效性,并且结合不同特征提取网络在检测沙滩废弃物时的表现,对比了SSD(single shot multibox detector)与Faster-RCNN算法.实验结果表明:所提改进算法在实际检测中有较好的综合性能,且相比原算法Faster-RCNN_Inception-V2,轻量化改进后的Inception-V2特征提取网络卷积计算量减少51.8%,模型训练耗时缩短了9.1%,检测耗时减少了10.9%,各类别AP的平均值(mean average precision,mAP)增加了1.02%,可见所提的改进方法能够有效提高目标检测的准确率,减少检测耗时,并在沙滩废弃物检测上得到成功应用,为海滨城市的沙滩清理维护提供了技术支持与保障. 展开更多
关键词 快速区域 卷积神经网络 inception-V2 轻量化特征提取网络 带泄露线性整流激活函数 沙滩废弃物
在线阅读 下载PDF
An Evaluation of Deep Learning Models for Classifying Time Series Individual Data Instances
19
作者 Joshua A. Blaney Suresh S. Muknahallipatna 《Journal of Computer and Communications》 2024年第11期187-206,共20页
Deep learning for time series sequence individual data instance classification can revolutionize computer assisted navigation by providing surgeons with accurate, real-time instrument locality through automatic instru... Deep learning for time series sequence individual data instance classification can revolutionize computer assisted navigation by providing surgeons with accurate, real-time instrument locality through automatic instrument localization. This paper presents an evaluation of Deep Learning models to perform individual data instance classification of time series data. The models explored include convolution and recurrent networks, as well as state-of-the-art residual and inception architectures. The time series data used to evaluate the models consists of depth and force measurements from a drill. Four recurrent neural network models using long short-term memory and gated recurrent units, known as baseline models, and four models using 1D convolution with ResNet and Inception architectures, known as advanced models, were evaluated by determining the data instance membership of the four classes. The four classes represent four distinct regions in a bone traversed by the drill bit during a surgical procedure. First, the time series data is preprocessed, identifying the four classes or regions of the bone. Next, the paper presents a discussion of the network architecture and modifications of both the basic and advanced deep learning models, followed by the training process and hyperparameters tuning. The performance of the models was evaluated using the precision and recall performance parameters. Out of the eight models evaluated, the recurrent neural network with gated recurrent units has the best performance. The paper also demonstrates the importance of the feature depth over the feature force in classifying the data instances, followed by the effects of the imbalanced dataset on the performance of the models. 展开更多
关键词 Recurrent Neural Networks Long Short Term Memory Gated Recurrent units Residual Networks inception Networks
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部