期刊文献+

基于注意力机制的INC-GRU人体活动识别模型

INC-GRU Human Activity Recognition Model Based on Attention Mechanism
在线阅读 下载PDF
导出
摘要 随着外骨骼技术的不断发展,人体活动识别技术也受到越来越多的关注,在医疗、工业和人工智能等方面应用广泛。目前,许多机器学习算法已经可以通过传感器数据实现对人体活动的识别,并取得了较好的结果。传统机器学习算法受特征提取的影响较大,为了解决上述问题,提出了一种具有注意力机制的INC-GRU模型,该模型使用Inception网络与CBAM模块用于空间特征提取部分,采用门控循环单元(gated recurrent units,GRU)和注意力机制用于时间特征提取部分,有效地利用了时间序列数据中的空间和时间信息,注意力机制的加入使模型可以为每一个数据添加不同的权重,让模型选择性的关注关键数据。所提出的模型分别在UCI-HAR和WISDM数据集上进行了实验,F 1分数分别为96.64%和97.92%。通过与一些现有的模型进行比较分析,证明了本文模型的优越性。 With the continuous development of exoskeleton technology.HAR(human activity recognition)has been receiving increasing attention.It has been widely applied in fields such as healthcare,industry,and artificial intelligence.Currently,various machine learning algorithms have been utilized to achieve HAR using sensor data,resulting in promising outcomes.However,traditional machine learning methods are significantly influenced by the feature extraction process.To address these challenges,an INC-GRU model integrated with an attention mechanism was proposed.The model employs an Inception network and CBAM(convolutional block attention module)for spatial feature extraction.GRU(gated recurrent units)and an attention mechanism were used for temporal feature extraction.This approach effectively leverages both spatial and temporal information in time series data,allowing different weights to be assigned to each data point,thereby enabling selective focus on key information.Experiments conducted on the UCI-HAR and WISDM datasets have achieved F 1 scores of 96.64% and 97.92%,respectively.Comparative analyses with existing models have demonstrated the superiority of the proposed INC-GRU model.
作者 张芷龙 王力 ZHANG Zhi-long;WANG Li(School of Electronic Information and Automation,Civil Aviation University of China,Tianjin 300300,China)
出处 《科学技术与工程》 北大核心 2025年第26期11230-11236,共7页 Science Technology and Engineering
基金 民航安全能力建设基金([2023]50,[2024]28) 中央高校基本科研基金(3122018S003)。
关键词 人体活动识别 Inception网络 门控循环单元 注意力机制 human activity recognition Inception module gated recurrent unit self-attention mechanism
  • 相关文献

参考文献5

二级参考文献40

  • 1Ouchi K,Doi M.Indoor-outdoor activity recognition by a smartphone[C]//Proceedings of the 2012 ACM Conference on Ubiquitous Computing,2012:600-601.
  • 2Kern N,Schiele B,Schmidt A.Multi-sensor activity context detection for wearable computing[C]//Ambient Intelligence.[S.l.]:Springer,2003:220-232.
  • 3Lester J,Choudhury T,Kern N,et al.A hybrid discriminative/generative approach for modeling human activities[C]//IJCAI,2005:766-772.
  • 4Maurer U,Rowe A,Smailagic A,et al.Location and activity recognition using e Watch:A wearable sensor platform[M]//Ambient Intelligence in Everyday Life.[S.l.]:Springer,2006:86-102.
  • 5Qian H,Mao Y,Xiang W,et al.Recognition of human activities using SVM multi-class classifier[J].Pattern Recognition Letters,2010,31:100-111.
  • 6Preece S J,Goulermas J Y,Kenney L P,et al.Activity identification using body-mounted sensors-a review of classification techniques[J].Physiological Measurement,2009,30.
  • 7Khan A M,Lee Y K,Kim T S.Accelerometer signal-based human activity recognition using augmented autoregressive model coefficients and artificial neural nets[C]//Engineering in Medicine and Biology Society,30th Annual International Conference of the IEEE,2008:5172-5175.
  • 8Gu T,Chen S,Tao X,et al.An unsupervised approach to activity recognition and segmentation based on object-use fingerprints[J].Data&Knowledge Engineering,2010,69:533-544.
  • 9Guan D,Yuan W,Lee Y K,et al.Activity recognition based on semi-supervised learning[C]//13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications,2007:469-475.
  • 10Stikic M,Larlus D,Schiele B.Multi-graph based semisupervised learning for activity recognition[C]//International Symposium on Wearable Computers,2009:85-92.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部