Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete v...Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete vessel segmentation and poor continuity.In this study,we propose CT-MFENet to address the aforementioned issues.First,the use of context transformer(CT)allows for the integration of contextual feature information,which helps establish the connection between pixels and solve the problem of incomplete vessel continuity.Second,multi-scale dense residual networks are used instead of traditional CNN to address the issue of inadequate local feature extraction when the model encounters vessels at multiple scales.In the decoding stage,we introduce a local-global fusion module.It enhances the localization of vascular information and reduces the semantic gap between high-and low-level features.To address the class imbalance in retinal images,we propose a hybrid loss function that enhances the segmentation ability of the model for topological structures.We conducted experiments on the publicly available DRIVE,CHASEDB1,STARE,and IOSTAR datasets.The experimental results show that our CT-MFENet performs better than most existing methods,including the baseline U-Net.展开更多
Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells an...Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.展开更多
Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variati...Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.展开更多
While the increasing development of modern information technology, the globalization is becoming an obvious feature on educational situations. Therefore, mastering some necessary bilingual competencies will present es...While the increasing development of modern information technology, the globalization is becoming an obvious feature on educational situations. Therefore, mastering some necessary bilingual competencies will present essential meaning for educators. In the case of language teachers who teaching in the ethnically plural countries, for instance, China, the United States, language teachers have to face to various difficulties on the process of teaching in the bilingual class. Currently, the advanced technology is gradually being applied into language teaching, and then provides a series of advantages on improving the quality of language teaching. Firstly, the essay will analyse the barriers which exist in the language class, which in the level of Chinese university. Secondly, it will systematically describe how ICT can help language teachers to solve difficulties on teaching and display diverse innovative technological tools of language teaching.展开更多
With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.He...With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence,designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless,the explosive growth of data leads to the low efficiency of the algorithm,which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm,and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-formvideos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.展开更多
Finding out out-of-vocabulary words is an urgent and difficult task in Chinese words segmentation. To avoid the defect causing by offline training in the traditional method, the paper proposes an improved prediction b...Finding out out-of-vocabulary words is an urgent and difficult task in Chinese words segmentation. To avoid the defect causing by offline training in the traditional method, the paper proposes an improved prediction by partical match (PPM) segmenting algorithm for Chinese words based on extracting local context information, which adds the context information of the testing text into the local PPM statistical model so as to guide the detection of new words. The algorithm focuses on the process of online segmentatien and new word detection which achieves a good effect in the close or opening test, and outperforms some well-known Chinese segmentation system to a certain extent.展开更多
Ontology-based semantic information integration resolve the schema-level heterogeneity and part of data level heterogeneity between distributed data sources. But it is ubiquitous that schema semantics of information i...Ontology-based semantic information integration resolve the schema-level heterogeneity and part of data level heterogeneity between distributed data sources. But it is ubiquitous that schema semantics of information is identical while the interpretation of it varies with different context, and ontology-based semantic information integration can not resolve this context heterogeneity. By introducing context representation and context mediation to ontology based information integration, the attribute-level context heterogeneity can be detected and reconciled automatically, and hence a complete solution for semantic heterogeneity is formed. Through a concrete example, the context representation and the process in which the attribute-level context heterogeneity is reconciled during query processing are presented. This resolution can make up the deficiency of schema mapping based semantic information integration. With the architecture proposed in this paper the semantic heterogeneity solution is adaptive and extensive.展开更多
With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision su...With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision support systems (DSS). To give an improved support to mobile business professionals, it is necessary to go further than just allowing a simple remote access to a Business Intelligence platform. In this paper, the need for actual context-aware mobile Geospatial Business Intelligence (GeoBI) systems that can help capture, filter, organize and structure the user mobile context is exposed and justified. Furthermore, since capturing, structuring, and modeling mobile contextual information is still a research issue, a wide inventory of existing research work on context and mobile context is provided. Then, step by step, we methodologically identify relevant contextual information to capture for mobility purposes as well as for BI needs, organize them into context-dimensions, and build a hierarchical mobile GeoBI context model which (1) is geo-spatial-extended, (2) fits with human perception of mobility, (3) takes into account the local context interactions and information-sharing with remote contexts, and (4) matches with the usual hierarchical aggregated structure of BI data.展开更多
The notion of context provides flexibility and adaptation to cloud computing services. Location, time identity and activity of users are examples of primary context types. The motivation of this paper is to formalize ...The notion of context provides flexibility and adaptation to cloud computing services. Location, time identity and activity of users are examples of primary context types. The motivation of this paper is to formalize reasoning about context information in cloud computing environments. To formalize such context-aware reasoning, the logic LCM of context-mixture is introduced based on a Gentzen-type sequent calculus for an extended resource-sensitive logic. LCM has a specific inference rule called the context-mixture rule, which can naturally represent a mechanism for merging formulas with context information. Moreover, LCM has a specific modal operator called the sequence modal operator, which can suitably represent context information. The cut-elimination and embedding theorems for LCM are proved, and a fragment of LCM is shown to be decidable. These theoretical results are intended to provide a logical justification of context-aware cloud computing service models such as a flowable service model.展开更多
Aiming at the problems such as diverse target scales and large-scale changes in crowds in dense crowd scenarios,a crowd density estimation method based on multi-scale feature fusion and information en-hancement is pro...Aiming at the problems such as diverse target scales and large-scale changes in crowds in dense crowd scenarios,a crowd density estimation method based on multi-scale feature fusion and information en-hancement is proposed.Firstly,considering that small-scale targets account for a relatively large proportion in the image,based on the VGG-16 network,the dilated convolution module is introduced to mine the detailed information of the image.Secondly,in order to make full use of the multi-scale information of the target,a new context-aware module is constructed to extract the contrast features between different scales.Finally,con-sidering the characteristic of continuous changes in the target scale,a multi-scale feature aggregation module is designed to enhance the sampling range of dense scales and multi-scale information interaction,thereby improving the network performance.Experiments on public datasets show that the proposed method in this paper can effectively estimate the population density compared with other advanced methods.展开更多
A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, ...A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, it can produce fuzzy privacy decision as the change of personal information sensitivity and personal information receiver trust. The uncertain privacy decision model was proposed about personal information disclosure based on the change of personal information receiver trust and personal information sensitivity. A fuzzy privacy decision information system was designed according to this model. Personal privacy control policies can be extracted from this information system by using rough set theory. It also solves the problem about learning privacy control policies of personal information disclosure.展开更多
According to Edward Hall,cultures can be categorized as being either high or low context.Chinese culture is typically high-context culture.The paper tries to explore the mode of information transfer in high-context cu...According to Edward Hall,cultures can be categorized as being either high or low context.Chinese culture is typically high-context culture.The paper tries to explore the mode of information transfer in high-context cultures in terms of Red Cliff.The discussion will be focused on dialogues and the costume.This will help understand the characteristics of high-context culture and make the communication between people from cultures of different contexts easier.展开更多
针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction mod...针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module,CFEM)和感受野特征增强模块(receptive field feature enhancement module,RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module,CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union,Shape IoU)替换完全交并比(complete intersection over union,CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。展开更多
为解决现有的事件抽取方法在实体抽取子任务中难以充分利用上下文信息,导致事件抽取精度较低的问题,提出了基于跨度和图卷积网络的篇章级事件抽取(document-level event extraction based on span and graph convolutional network, DEE...为解决现有的事件抽取方法在实体抽取子任务中难以充分利用上下文信息,导致事件抽取精度较低的问题,提出了基于跨度和图卷积网络的篇章级事件抽取(document-level event extraction based on span and graph convolutional network, DEESG)模型。首先,设计中间线性层对编码的向量进行线性处理,并结合标注信息计算最佳跨度,通过提升对跨度开始位置和结束位置判断的准确度来提高实体抽取的精度;接着,提出异构图的构建方法,使用池化策略将实体与句子表示为图的节点,根据提出的建边规则构建异构图,以此建立全局信息的交互,并利用多层图卷积网络(graph convolutional network, GCN)对异构图进行卷积,获得具有上下文信息的实体表示和句子表示,以此解决上下文信息利用不充分的问题;然后,利用多头注意力机制进行事件类型的检测;最后,为组合中的实体分配论元角色,完成事件抽取任务。在中文金融公告(Chinese financial announcements, ChFinAnn)数据集上进行实验。结果表明,与拥有追踪器的异构图交互模型(graph-based interaction model with a tracker, GIT)相比,DEESG模型的F1分数提升了1.3个百分点。该研究证实DEESG模型能有效应用于篇章级事件抽取领域。展开更多
基金the National Natural Science Foundation of China(No.62266025)。
文摘Segmentation of the retinal vessels in the fundus is crucial for diagnosing ocular diseases.Retinal vessel images often suffer from category imbalance and large scale variations.This ultimately results in incomplete vessel segmentation and poor continuity.In this study,we propose CT-MFENet to address the aforementioned issues.First,the use of context transformer(CT)allows for the integration of contextual feature information,which helps establish the connection between pixels and solve the problem of incomplete vessel continuity.Second,multi-scale dense residual networks are used instead of traditional CNN to address the issue of inadequate local feature extraction when the model encounters vessels at multiple scales.In the decoding stage,we introduce a local-global fusion module.It enhances the localization of vascular information and reduces the semantic gap between high-and low-level features.To address the class imbalance in retinal images,we propose a hybrid loss function that enhances the segmentation ability of the model for topological structures.We conducted experiments on the publicly available DRIVE,CHASEDB1,STARE,and IOSTAR datasets.The experimental results show that our CT-MFENet performs better than most existing methods,including the baseline U-Net.
基金funded by the China Chongqing Municipal Science and Technology Bureau,grant numbers 2024TIAD-CYKJCXX0121,2024NSCQ-LZX0135Chongqing Municipal Commission of Housing and Urban-Rural Development,grant number CKZ2024-87+3 种基金the Chongqing University of Technology graduate education high-quality development project,grant number gzlsz202401the Chongqing University of Technology-Chongqing LINGLUE Technology Co.,Ltd.,Electronic Information(Artificial Intelligence)graduate joint training basethe Postgraduate Education and Teaching Reform Research Project in Chongqing,grant number yjg213116the Chongqing University of Technology-CISDI Chongqing Information Technology Co.,Ltd.,Computer Technology graduate joint training base.
文摘Detecting abnormal cervical cells is crucial for early identification and timely treatment of cervical cancer.However,this task is challenging due to the morphological similarities between abnormal and normal cells and the significant variations in cell size.Pathologists often refer to surrounding cells to identify abnormalities.To emulate this slide examination behavior,this study proposes a Multi-Scale Feature Fusion Network(MSFF-Net)for detecting cervical abnormal cells.MSFF-Net employs a Cross-Scale Pooling Model(CSPM)to effectively capture diverse features and contextual information,ranging from local details to the overall structure.Additionally,a Multi-Scale Fusion Attention(MSFA)module is introduced to mitigate the impact of cell size variations by adaptively fusing local and global information at different scales.To handle the complex environment of cervical cell images,such as cell adhesion and overlapping,the Inner-CIoU loss function is utilized to more precisely measure the overlap between bounding boxes,thereby improving detection accuracy in such scenarios.Experimental results on the Comparison detector dataset demonstrate that MSFF-Net achieves a mean average precision(mAP)of 63.2%,outperforming state-of-the-art methods while maintaining a relatively small number of parameters(26.8 M).This study highlights the effectiveness of multi-scale feature fusion in enhancing the detection of cervical abnormal cells,contributing to more accurate and efficient cervical cancer screening.
基金the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Accurately identifying small objects in high-resolution aerial images presents a complex and crucial task in thefield of small object detection on unmanned aerial vehicles(UAVs).This task is challenging due to variations inUAV flight altitude,differences in object scales,as well as factors like flight speed and motion blur.To enhancethe detection efficacy of small targets in drone aerial imagery,we propose an enhanced You Only Look Onceversion 7(YOLOv7)algorithm based on multi-scale spatial context.We build the MSC-YOLO model,whichincorporates an additional prediction head,denoted as P2,to improve adaptability for small objects.We replaceconventional downsampling with a Spatial-to-Depth Convolutional Combination(CSPDC)module to mitigatethe loss of intricate feature details related to small objects.Furthermore,we propose a Spatial Context Pyramidwith Multi-Scale Attention(SCPMA)module,which captures spatial and channel-dependent features of smalltargets acrossmultiple scales.This module enhances the perception of spatial contextual features and the utilizationof multiscale feature information.On the Visdrone2023 and UAVDT datasets,MSC-YOLO achieves remarkableresults,outperforming the baseline method YOLOv7 by 3.0%in terms ofmean average precision(mAP).The MSCYOLOalgorithm proposed in this paper has demonstrated satisfactory performance in detecting small targets inUAV aerial photography,providing strong support for practical applications.
文摘While the increasing development of modern information technology, the globalization is becoming an obvious feature on educational situations. Therefore, mastering some necessary bilingual competencies will present essential meaning for educators. In the case of language teachers who teaching in the ethnically plural countries, for instance, China, the United States, language teachers have to face to various difficulties on the process of teaching in the bilingual class. Currently, the advanced technology is gradually being applied into language teaching, and then provides a series of advantages on improving the quality of language teaching. Firstly, the essay will analyse the barriers which exist in the language class, which in the level of Chinese university. Secondly, it will systematically describe how ICT can help language teachers to solve difficulties on teaching and display diverse innovative technological tools of language teaching.
文摘With the popularity of 5G and the rapid development of mobile terminals,an endless stream of short video software exists.Browsing short-form mobile video in fragmented time has become the mainstream of user’s life.Hence,designing an efficient short video recommendation method has become important for major network platforms to attract users and satisfy their requirements.Nevertheless,the explosive growth of data leads to the low efficiency of the algorithm,which fails to distill users’points of interest on one hand effectively.On the other hand,integrating user preferences and the content of items urgently intensify the requirements for platform recommendation.In this paper,we propose a collaborative filtering algorithm,integrating time context information and user context,which pours attention into expanding and discovering user interest.In the first place,we introduce the temporal context information into the typical collaborative filtering algorithm,and leverage the popularity penalty function to weight the similarity between recommended short videos and the historical short videos.There remains one more point.We also introduce the user situation into the traditional collaborative filtering recommendation algorithm,considering the context information of users in the generation recommendation stage,and weight the recommended short-formvideos of candidates.At last,a diverse approach is used to generate a Top-K recommendation list for users.And through a case study,we illustrate the accuracy and diversity of the proposed method.
基金National Natural Science Foundation of China ( No.60903129)National High Technology Research and Development Program of China (No.2006AA010107, No.2006AA010108)Foundation of Fujian Province of China (No.2008F3105)
文摘Finding out out-of-vocabulary words is an urgent and difficult task in Chinese words segmentation. To avoid the defect causing by offline training in the traditional method, the paper proposes an improved prediction by partical match (PPM) segmenting algorithm for Chinese words based on extracting local context information, which adds the context information of the testing text into the local PPM statistical model so as to guide the detection of new words. The algorithm focuses on the process of online segmentatien and new word detection which achieves a good effect in the close or opening test, and outperforms some well-known Chinese segmentation system to a certain extent.
基金The National Natural Science Foundation of China (No.50305007)the Scientific Research Project of Hubei Provincial Department of Education (No.D200618003)
文摘Ontology-based semantic information integration resolve the schema-level heterogeneity and part of data level heterogeneity between distributed data sources. But it is ubiquitous that schema semantics of information is identical while the interpretation of it varies with different context, and ontology-based semantic information integration can not resolve this context heterogeneity. By introducing context representation and context mediation to ontology based information integration, the attribute-level context heterogeneity can be detected and reconciled automatically, and hence a complete solution for semantic heterogeneity is formed. Through a concrete example, the context representation and the process in which the attribute-level context heterogeneity is reconciled during query processing are presented. This resolution can make up the deficiency of schema mapping based semantic information integration. With the architecture proposed in this paper the semantic heterogeneity solution is adaptive and extensive.
文摘With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision support systems (DSS). To give an improved support to mobile business professionals, it is necessary to go further than just allowing a simple remote access to a Business Intelligence platform. In this paper, the need for actual context-aware mobile Geospatial Business Intelligence (GeoBI) systems that can help capture, filter, organize and structure the user mobile context is exposed and justified. Furthermore, since capturing, structuring, and modeling mobile contextual information is still a research issue, a wide inventory of existing research work on context and mobile context is provided. Then, step by step, we methodologically identify relevant contextual information to capture for mobility purposes as well as for BI needs, organize them into context-dimensions, and build a hierarchical mobile GeoBI context model which (1) is geo-spatial-extended, (2) fits with human perception of mobility, (3) takes into account the local context interactions and information-sharing with remote contexts, and (4) matches with the usual hierarchical aggregated structure of BI data.
文摘The notion of context provides flexibility and adaptation to cloud computing services. Location, time identity and activity of users are examples of primary context types. The motivation of this paper is to formalize reasoning about context information in cloud computing environments. To formalize such context-aware reasoning, the logic LCM of context-mixture is introduced based on a Gentzen-type sequent calculus for an extended resource-sensitive logic. LCM has a specific inference rule called the context-mixture rule, which can naturally represent a mechanism for merging formulas with context information. Moreover, LCM has a specific modal operator called the sequence modal operator, which can suitably represent context information. The cut-elimination and embedding theorems for LCM are proved, and a fragment of LCM is shown to be decidable. These theoretical results are intended to provide a logical justification of context-aware cloud computing service models such as a flowable service model.
文摘Aiming at the problems such as diverse target scales and large-scale changes in crowds in dense crowd scenarios,a crowd density estimation method based on multi-scale feature fusion and information en-hancement is proposed.Firstly,considering that small-scale targets account for a relatively large proportion in the image,based on the VGG-16 network,the dilated convolution module is introduced to mine the detailed information of the image.Secondly,in order to make full use of the multi-scale information of the target,a new context-aware module is constructed to extract the contrast features between different scales.Finally,con-sidering the characteristic of continuous changes in the target scale,a multi-scale feature aggregation module is designed to enhance the sampling range of dense scales and multi-scale information interaction,thereby improving the network performance.Experiments on public datasets show that the proposed method in this paper can effectively estimate the population density compared with other advanced methods.
基金Supported by the National Natural Science Foundation of China (60573119, 604973098) and IBM joint project
文摘A context-aware privacy protection framework was designed for context-aware services and privacy control methods about access personal information in pervasive environment. In the process of user's privacy decision, it can produce fuzzy privacy decision as the change of personal information sensitivity and personal information receiver trust. The uncertain privacy decision model was proposed about personal information disclosure based on the change of personal information receiver trust and personal information sensitivity. A fuzzy privacy decision information system was designed according to this model. Personal privacy control policies can be extracted from this information system by using rough set theory. It also solves the problem about learning privacy control policies of personal information disclosure.
文摘According to Edward Hall,cultures can be categorized as being either high or low context.Chinese culture is typically high-context culture.The paper tries to explore the mode of information transfer in high-context cultures in terms of Red Cliff.The discussion will be focused on dialogues and the costume.This will help understand the characteristics of high-context culture and make the communication between people from cultures of different contexts easier.
文摘针对遥感图像微小目标检测中存在的浅层细化特征、深层语义表征和多尺度信息提取3个问题,提出一种综合运用多项技术的跨尺度YOLOv7(cross-scale YOLOv7,CSYOLOv7)网络。首先,设计跨阶段特征提取模块(cross-stage feature extraction module,CFEM)和感受野特征增强模块(receptive field feature enhancement module,RFFEM)。CFEM提高模型细化特征提取能力并抑制浅层下采样过程中特征的丢失,RFFEM加大网络对深层语义特征的提取力度,增强模型对目标上下文信息获取能力。其次,设计跨梯度空间金字塔池化模块(cross-gradient space pyramid pool module,CSPPM)有效融合微小目标多尺度的全局和局部特征。最后,用形状感知交并比(shape-aware intersection over union,Shape IoU)替换完全交并比(complete intersection over union,CIoU),提高模型在边界框定位任务中的精确度。实验结果表明,CSYOLOv7网络在DIOR(dataset for image object recognition)数据集和NWPU VHR-10(Northwestern Polytechnical University Very High Resolution-10)数据集上分别取得了74%和89.6%的检测精度,有效提升遥感图像微小目标的检测效果。
文摘为解决现有的事件抽取方法在实体抽取子任务中难以充分利用上下文信息,导致事件抽取精度较低的问题,提出了基于跨度和图卷积网络的篇章级事件抽取(document-level event extraction based on span and graph convolutional network, DEESG)模型。首先,设计中间线性层对编码的向量进行线性处理,并结合标注信息计算最佳跨度,通过提升对跨度开始位置和结束位置判断的准确度来提高实体抽取的精度;接着,提出异构图的构建方法,使用池化策略将实体与句子表示为图的节点,根据提出的建边规则构建异构图,以此建立全局信息的交互,并利用多层图卷积网络(graph convolutional network, GCN)对异构图进行卷积,获得具有上下文信息的实体表示和句子表示,以此解决上下文信息利用不充分的问题;然后,利用多头注意力机制进行事件类型的检测;最后,为组合中的实体分配论元角色,完成事件抽取任务。在中文金融公告(Chinese financial announcements, ChFinAnn)数据集上进行实验。结果表明,与拥有追踪器的异构图交互模型(graph-based interaction model with a tracker, GIT)相比,DEESG模型的F1分数提升了1.3个百分点。该研究证实DEESG模型能有效应用于篇章级事件抽取领域。