This paper provides theoretical foundation for the problem of localization in multi-robot formations. Sufficient and necessary conditions for completely localizing a formation of mobile robots/vehicles in SE(2) based ...This paper provides theoretical foundation for the problem of localization in multi-robot formations. Sufficient and necessary conditions for completely localizing a formation of mobile robots/vehicles in SE(2) based on distributed sensor networks and graph rigidity are proposed. A method for estimating the quality of localizations via a linearized weighted least-squares algorithm is presented, which considers incomplete and noisy sensory information. The approach in this paper had been implemented in a multi-robot system of five car-like robots equipped with omni-directional cameras and IEEE 802.11b wireless network.展开更多
Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches m...Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.展开更多
Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophos...Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.展开更多
Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames w...Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.展开更多
Formation control of multi-robot systems has been extensively studied by model-based methods,where analytic control inputs are constructed based on the kinematics and/or dynamics model and the communication graphs of ...Formation control of multi-robot systems has been extensively studied by model-based methods,where analytic control inputs are constructed based on the kinematics and/or dynamics model and the communication graphs of the multi-robot system.Recently,driven by remarkable advances of robotic learning techniques,emerging studies on learning-based methods for formation control have been developed for adaptive and intelligent control of multi-robot systems.This paper aims to provide a brief overview of our recent development of learning-based formation control,and compare it with a model-based method for a case study of three-robot formation control.Fundamental principles,experimental results and technical challenges are presented,comparing the two different methodologies.展开更多
The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemis...The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemistry,breakthrough pressure,and triaxial mechanics testing based on the core,logging,seismic and production data.(1)Both types of silty shale,rich in organic matter in deep water and low in organic matter in shallow water,have good gas bearing properties.(2)The brittle mineral composition of shale is characterized by comparable feldspar and quartz content.(3)The pores are mainly inorganic pores with a small amount of organic pores.Pore development primarily hinges on a synergy between felsic minerals and total organic carbon content(TOC).(4)Dominated by Type I organic matters,the hydrocarbon generating organisms are algae and acritarch,with high maturity and high hydrocarbon generation potential.(5)Deep-and shallow-water shale gas exhibit in-situ and mixed gas generation characteristics,respectively.(6)The basic law of shale gas enrichment in the Qiongzhusi Formation was proposed as“TOC controlled accumulation and inorganic pore controlled enrichment”,which includes the in-situ enrichment model of“three highs and one over”(high TOC,high felsic mineral content,high inorganic pore content,overpressured formation)for organic rich shale represented by Well ZY2,and the in-situ+carrier-bed enrichment model of“two highs,one medium and one low”(high felsic content,high formation pressure,medium inorganic pore content,low TOC)for organic-poor shale gas represented by Well JS103.It is a new type of shale gas that is different from the Longmaxi Formation,enriching the formation mechanism of deep and ultra-deep shale gas.The deployment of multiple exploration wells has achieved significant breakthroughs in shale gas exploration.展开更多
Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower...Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower formation and inducing more flowers usually result in higher yield.However,the genes for this purpose have not been well characterized in pitaya.Previously,FLOWERING BHLHs(FBHs)have been identified as positive regulators of flower formation.In the present work,a total of eight FBHs were identified in pitaya.This is a greater number than in beet and spinach,possibly because of the recent whole-genome duplication that occurred in the pitaya genome.The phylogenetic tree indicated that the FBHs could be divided into three groups.In TYPEⅡ,the genes of Caryophyllales encode atypical FBHs and are generated by dispersed duplication.The K_(a)/K_(s) ratios indicated that HpFBHs are under purifying selection.Promoter and expression analysis of HpFBHs revealed that they are spatiotemporally activated in flower-related tissues and responsive to multiple abiotic stresses.These results indicated that HpFBHs are involved in the flower formation of pitaya.Therefore,typical HpFBH1/3 from TYPEⅡI and an atypical HpFBH8 from TYPEⅡwere selected for functional verification.HpFBH3 was found to heterodimerize with HpFBH1 in the nucleus using subcellular localization,yeast two-hybrid and luciferase complementation assays.With bioinformatic analysis,all HpFBHs were predicted to transactivate downstream genes via binding to the E-boxes,which were frequently detected in the promoters of HpCOs,HpFTs and HpSOC1s.RNA-Seq datasets showed that these flowering accelerators were expressed in coordination with HpFBH3.Yeast one-hybrid and dual-luciferase reporter assays further verified that HpFBH3 transactivated HpCO7 by selectively binding to the E-boxes in the promoter.Moreover,ectopic overexpression of HpFBH3 accelerated flower formation in Arabidopsis.In summary,this study systematically characterized the typical HpFBHs,especially HpFBH3,as positive regulators of flower formation,which could be target genes for the genetic improvement of pitaya.展开更多
Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milli...Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.展开更多
Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guang...Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guangdong and Guangxi sections of the Pearl River Basin as examples,the transfer-matrix method and standard deviation ellipse model were applied to characterize the evolution of territorial space patterns from 1990 to 2020.A trend surface analysis and the Theil index were used to analyze regional differences in the evolution process,and geodetectors were used to identify the underlying mechanisms of the changes.There were three key results.(1)In these critical areas of the Pearl River Basin,agricultural and ecological spaces have rapidly declined due to urban expansion,with transfers between these spaces dominating the evolution of territorial space patterns.Spatial pattern changes in the Guangdong section were more intense than in the Guangxi section.(2)Regional differences in urban space have decreased,whereas differences in agricultural and ecological spaces have intensified.Driven by socio-economic growth,the cross-regional transfers of territorial space have created a“high in the east,while low in the west”inter-regional difference,and a“high in the south,while low in the north”intra-regional difference shaped by natural conditions.The regional differences in space patterns were greater in Guangdong than in Guangxi.(3)The evolution of watershed territorial space patterns resulted from scale changes,locational shifts,structural reorganizations,and directional changes driven by multiple factors.Natural environment,social life,economic development,and policy factors played foundational,leading,key driving,and guiding roles,respectively.Additionally,the regional differences in the evolution of watershed territorial space patterns originated from the differential transmission of the influence of various factors affecting spatial evolution.Enhancing urban space efficiency,restructuring agricultural space,and optimizing ecological space are key strategies for building a complementary and synergistic territorial space pattern in the basin.展开更多
Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugatio...Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugation across diverse metro lines remains pivotal for elucidating its underlying mechanisms.The present study conducted extensive field surveys and tracking tests across 14 Chinese metro lines.By employing t-distributed stochastic neighbor embedding(t-SNE)for dimensional reduction and employing the unsupervised clustering algorithm DBSCAN,the research redefines the classification of metro rail corrugation based on characteristic information.The analysis encompassed spatial distribution and temporal evolution of this phenomenon.Findings revealed that floating slab tracks exhibited the highest proportion of rail corrugation at 47%.Notably,ordinary monolithic bed tracks employing damping fasteners were more prone to inducing rail corrugation.Corrugation primarily manifested in curve sections with radii between 300 and 500 m,featuring ordinary monolithic bed track and steel-spring floating slab track structures,with wavelengths typically between 30 and 120 mm.Stick–slip vibrations of the wheel–rail system maybe led to short-wavelength corrugations(40–60 mm),while longer wavelengths(200–300 mm)exhibited distinct fatigue damage characteristics,mainly observed in steel-spring floating slab tracks and small-radius curve sections of ordinary monolithic bed tracks and ladder sleeper tracks.A classification system comprising 57 correlated features categorized metro rail corrugation into four distinct types.These research outcomes serve as critical benchmarks for validating various theories pertaining to rail corrugation formation.展开更多
The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Pa...The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.展开更多
Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of sh...Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.展开更多
Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored ...Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.展开更多
Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin...Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation.展开更多
The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the...The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.展开更多
Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system ...Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system is crucial in deep reservoir exploration.This study examined the first member and upper submember of the second member of the Dongying Formation in the Bodong Low Uplift in the Bohai Bay Basin(East China),documenting the petrologic features and physical properties of reservoirs in different tectonic sub-units through integrated analysis of log and rock data,along with core observation.A mechanism for deep reservoir formation in lacustrine rift basins was developed to elucidate the sedimentary and diagenetic processes in complex tectonic settings.The results show that tectonic activities result in the occurrence of provenances in multiple directions and the existence of reservoirs at varying burial depths,as well as the significant diversity in sedimentary and diagenetic processes.The grain sizes of the sandstones,influenced by transport pathways rather than the topography of the sedimentary area,exhibit spatial complexity due to tectonic frameworks,which determine the initial pore content of reservoirs.However,the burial depth,influenced by subsequent tectonic subsidence,significantly impacts pore evolution during diagenesis.Based on the significant differences of reservoirs in slope zone,low uplift and depression zone,we establish different tectonic-diagenetic models in deep complex tectonic units of lacustrine rift basins.展开更多
The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on ...The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on QXZ show that:(a)the lava consists of two components,constituted by comenditic obsidian fragments immersed in a continuous,aphanitic component;(b)both components have the same geochemical and isotopic variations of the ME magma.The QXZ and ME comendites result from fractional crystallization and crustal assimilation processes.The temperature of the QXZ magma was about 790℃ and the depth of the magma reservoir around 7 km,the same values as estimated for ME.QXZ had a viscosity of 10^(5.5)-10^(9) Pa s and a velocity of 3-10 km/yr.The emplacement time was 0.5-1.6yr and the flow rate 0.48-1.50 m^(3)/s.These values lie within the range estimated for other rhyolitic flows worldwide.The QXZ lava originated through a mixed explosive-effusive activity with the obsidian resulting from the ascent of undercooling,degassing and the fragmentation of magma along the conduit walls,whereas the aphanitic component testifies to the less undercooled and segregated flow at the center of the conduit.The QXZ lava demonstrates the extensive history of the ME magma chamber.展开更多
Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on...Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities.展开更多
Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the ...Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.展开更多
文摘This paper provides theoretical foundation for the problem of localization in multi-robot formations. Sufficient and necessary conditions for completely localizing a formation of mobile robots/vehicles in SE(2) based on distributed sensor networks and graph rigidity are proposed. A method for estimating the quality of localizations via a linearized weighted least-squares algorithm is presented, which considers incomplete and noisy sensory information. The approach in this paper had been implemented in a multi-robot system of five car-like robots equipped with omni-directional cameras and IEEE 802.11b wireless network.
基金the support of the National Natural Science Foundation of China(22575230)。
文摘Conventional error cancellation approaches separate molecules into smaller fragments and sum the errors of all fragments to counteract the overall computational error of the parent molecules.However,these approaches may be ineffective for systems with strong localized chemical effects,as fragmenting specific substructures into simpler chemical bonds can introduce additional errors instead of mitigating them.To address this issue,we propose the Substructure-Preserved Connection-Based Hierarchy(SCBH),a method that automatically identifies and freezes substructures with significant local chemical effects prior to molecular fragmentation.The SCBH is validated by the gas-phase enthalpy of formation calculation of CHNO molecules.Therein,based on the atomization scheme,the reference and test values are derived at the levels of Gaussian-4(G4)and M062X/6-31+G(2df,p),respectively.Compared to commonly used approaches,SCBH reduces the average computational error by half and requires only15%of the computational cost of G4 to achieve comparable accuracy.Since different types of local effect structures have differentiated influences on gas-phase enthalpy of formation,substituents with strong electronic effects should be retained preferentially.SCBH can be readily extended to diverse classes of organic compounds.Its workflow and source code allow flexible customization of molecular moieties,including azide,carboxyl,trinitromethyl,phenyl,and others.This strategy facilitates accurate,rapid,and automated computations and corrections,making it well-suited for high-throughput molecular screening and dataset construction for gas-phase enthalpy of formation.
基金Supported by Wenzhou Science and Technology Bureau,No.Y20240207.
文摘Cholelithiasis has a complex pathogenesis,necessitating better therapeutic and preventive strategies.We recently read with interest Wang et al’s study on lysine acetyltransferase 2A(KAT2A)-mediated adenosine monophosphate-activated protein kinase(AMPK)succinylation in cholelithiasis.Using mouse models and gallbladder mucosal epithelial cells,they found that KAT2A inhibits gallstones through AMPK K170 succinylation,thereby activating the AMPK/silent information regulator 1 pathway to reduce inflammation and pyroptosis.This study is the first to connect lysine succinylation with cholelithiasis,offering new insights and identifying succinylation as a potential therapeutic target.Future research should confirm these findings using patient samples,investigate other posttranslational modifications,and use structural biology to clarify succinylationinduced conformational changes,thereby bridging basic research to clinical applications.
基金Supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions under Grant No.014000319/2018-00391.
文摘Pre-chamber ignition technology can address the issue of uneven in-cylinder mixture combustion in large-bore marine engines.The impact of various pre-chamber structures on the formation of the mixture and jet flames within the pre-chamber is explored.This study performed numerical simulations on a large-bore marine ammonia/hydrogen pre-chamber engine prototype,considering pre-chamber volume,throat diameter,the distance between the hydrogen injector and the spark plug,and the hydrogen injector angle.Compared with the original engine,when the pre-chamber volume is 73.4 ml,the throat diameter is 14 mm,the distance ratio is 0.92,and the hydrogen injector angle is 80°.Moreover,the peak pressure in the pre-chamber increased by 23.1%,and that in the main chamber increased by 46.3%.The results indicate that the performance of the original engine is greatly enhanced by altering its fuel and pre-chamber structure.
基金This work was supported by US National Science Foundation grants CMMI-1825709(Understanding Pedestrian Dynamics for Seamless Human-Robot Interaction)IIS-1838799(SCH:INT:Collaborative Research:Aging In Place Through Enhanced Mobility and Social Connectedness:An Integrated Robot and Wearable Sensor Approach).
文摘Formation control of multi-robot systems has been extensively studied by model-based methods,where analytic control inputs are constructed based on the kinematics and/or dynamics model and the communication graphs of the multi-robot system.Recently,driven by remarkable advances of robotic learning techniques,emerging studies on learning-based methods for formation control have been developed for adaptive and intelligent control of multi-robot systems.This paper aims to provide a brief overview of our recent development of learning-based formation control,and compare it with a model-based method for a case study of three-robot formation control.Fundamental principles,experimental results and technical challenges are presented,comparing the two different methodologies.
基金Supported by the Sinopec Major Science and Technology Project(P22081)National Natural Science Foundation of China(U24B60001).
文摘The basic geological characteristics of the Qiongzhusi Formation reservoirs and conditions for shale gas enrichment and high-yield were studied by using methods such as mineral scanning,organic and inorganic geochemistry,breakthrough pressure,and triaxial mechanics testing based on the core,logging,seismic and production data.(1)Both types of silty shale,rich in organic matter in deep water and low in organic matter in shallow water,have good gas bearing properties.(2)The brittle mineral composition of shale is characterized by comparable feldspar and quartz content.(3)The pores are mainly inorganic pores with a small amount of organic pores.Pore development primarily hinges on a synergy between felsic minerals and total organic carbon content(TOC).(4)Dominated by Type I organic matters,the hydrocarbon generating organisms are algae and acritarch,with high maturity and high hydrocarbon generation potential.(5)Deep-and shallow-water shale gas exhibit in-situ and mixed gas generation characteristics,respectively.(6)The basic law of shale gas enrichment in the Qiongzhusi Formation was proposed as“TOC controlled accumulation and inorganic pore controlled enrichment”,which includes the in-situ enrichment model of“three highs and one over”(high TOC,high felsic mineral content,high inorganic pore content,overpressured formation)for organic rich shale represented by Well ZY2,and the in-situ+carrier-bed enrichment model of“two highs,one medium and one low”(high felsic content,high formation pressure,medium inorganic pore content,low TOC)for organic-poor shale gas represented by Well JS103.It is a new type of shale gas that is different from the Longmaxi Formation,enriching the formation mechanism of deep and ultra-deep shale gas.The deployment of multiple exploration wells has achieved significant breakthroughs in shale gas exploration.
基金supported by the National Natural Science Foundation of China(32160681 and 32060663)the National Guidance Foundation for Local Science and Technology Development of China(2023-009)+1 种基金the Guizhou Provincial Basic Research Program(Natural Science)(ZK[2022]YB132)the Foundation of Postgraduate of Guizhou Province,China(YJSKYJJ[2021]057)。
文摘Hylocereus polyrhizus,also known as pitaya or dragon fruit,is a climbing cactus grown worldwide because of its excellent performance under drought stress and appealing red-purple fruits.In practice,accelerating flower formation and inducing more flowers usually result in higher yield.However,the genes for this purpose have not been well characterized in pitaya.Previously,FLOWERING BHLHs(FBHs)have been identified as positive regulators of flower formation.In the present work,a total of eight FBHs were identified in pitaya.This is a greater number than in beet and spinach,possibly because of the recent whole-genome duplication that occurred in the pitaya genome.The phylogenetic tree indicated that the FBHs could be divided into three groups.In TYPEⅡ,the genes of Caryophyllales encode atypical FBHs and are generated by dispersed duplication.The K_(a)/K_(s) ratios indicated that HpFBHs are under purifying selection.Promoter and expression analysis of HpFBHs revealed that they are spatiotemporally activated in flower-related tissues and responsive to multiple abiotic stresses.These results indicated that HpFBHs are involved in the flower formation of pitaya.Therefore,typical HpFBH1/3 from TYPEⅡI and an atypical HpFBH8 from TYPEⅡwere selected for functional verification.HpFBH3 was found to heterodimerize with HpFBH1 in the nucleus using subcellular localization,yeast two-hybrid and luciferase complementation assays.With bioinformatic analysis,all HpFBHs were predicted to transactivate downstream genes via binding to the E-boxes,which were frequently detected in the promoters of HpCOs,HpFTs and HpSOC1s.RNA-Seq datasets showed that these flowering accelerators were expressed in coordination with HpFBH3.Yeast one-hybrid and dual-luciferase reporter assays further verified that HpFBH3 transactivated HpCO7 by selectively binding to the E-boxes in the promoter.Moreover,ectopic overexpression of HpFBH3 accelerated flower formation in Arabidopsis.In summary,this study systematically characterized the typical HpFBHs,especially HpFBH3,as positive regulators of flower formation,which could be target genes for the genetic improvement of pitaya.
基金co-supported by the Science Center for Gas Turbine Project, China(No. P2022-AB-IV-001-002)the National Natural Science Foundation of China (No. 91960203)+1 种基金the Fundamental Research Funds for the Central Universities (No. D5000230048)the Innovation Capability Support Program of Shaanxi (No. 2022TD-60)
文摘Superior strength and high-temperature performance make γ-TiAl vital for lightweight aero-engines. However, its inherent brittleness poses machining problems. This study employed Elliptical Ultrasonic Vibration Milling (EUVM) to address these problems. Considering the influence of machining parameters on vibration patterns of EUVM, a separation time model was established to analyze the vibration evolutionary process, thereby instructing the cutting mechanism. On this basis, deep discussions regarding chip formation, cutting force, edge breakage, and subsurface layer deformation were conducted for EUVM and Conventional Milling (CM). Chip morphology showed the chip formation was rooted in the periodic brittle fracture. Local dimples proved that the thermal effect of high-speed cutting improved the plasticity of γ-TiAl. EUVM achieved a maximum 18.17% reduction in cutting force compared with CM. The force variation mechanism differed with changes in the cutting speed or the vibration amplitude, and its correlation with thermal softening, strain hardening, and vibratory cutting effects was analyzed. EUVM attained desirable edge breakage by achieving smaller fracture lengths. The fracture mechanisms of different phases were distinct, causing a surge in edge fracture size of γ-TiAl under microstructural differences. In terms of subsurface deformation, EUVM also showed strengthening effects. Noteworthy, the lamellar deformation patterns under the cutting removal state differed from the quasi-static, which was categorized by the orientation angles. Additionally, the electron backscattering diffraction provided details of the influence of microstructural difference on the orientation and the deformation of grains in the subsurface layer. The results demonstrate that EUVM is a promising machining method for γ-TiAl and guide further research and development of EUVM γ-TiAl.
基金National Social Science Foundation Program,No.22VRC163National Natural Science Foundation of China,No.42061043+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,No.KYCX24_1008Innovation Project of Guangxi Graduate Education,No.YCSW2024473。
文摘Clarifying the mechanisms that control the evolution of territorial space patterns is essential for regulating and optimizing the geographical structure and processes related to sustainable development.Using the Guangdong and Guangxi sections of the Pearl River Basin as examples,the transfer-matrix method and standard deviation ellipse model were applied to characterize the evolution of territorial space patterns from 1990 to 2020.A trend surface analysis and the Theil index were used to analyze regional differences in the evolution process,and geodetectors were used to identify the underlying mechanisms of the changes.There were three key results.(1)In these critical areas of the Pearl River Basin,agricultural and ecological spaces have rapidly declined due to urban expansion,with transfers between these spaces dominating the evolution of territorial space patterns.Spatial pattern changes in the Guangdong section were more intense than in the Guangxi section.(2)Regional differences in urban space have decreased,whereas differences in agricultural and ecological spaces have intensified.Driven by socio-economic growth,the cross-regional transfers of territorial space have created a“high in the east,while low in the west”inter-regional difference,and a“high in the south,while low in the north”intra-regional difference shaped by natural conditions.The regional differences in space patterns were greater in Guangdong than in Guangxi.(3)The evolution of watershed territorial space patterns resulted from scale changes,locational shifts,structural reorganizations,and directional changes driven by multiple factors.Natural environment,social life,economic development,and policy factors played foundational,leading,key driving,and guiding roles,respectively.Additionally,the regional differences in the evolution of watershed territorial space patterns originated from the differential transmission of the influence of various factors affecting spatial evolution.Enhancing urban space efficiency,restructuring agricultural space,and optimizing ecological space are key strategies for building a complementary and synergistic territorial space pattern in the basin.
基金support extended by the Joint Funds of Beijing Municipal Natural Science Foundation and Fengtai Rail Transit Frontier Research(Grant No.L211006)the Fundamental Research Funds for the Central Universities(Science and technology leading talent team project,Grant No.2022JBXT010)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.2023YJS052)the National Natural Science Foundation of China(Grant No.52308426)。
文摘Investigations into rail corrugation within metro systems have traditionally focused on specific mechanisms,thereby limiting the generalizability of proposed theories.Understanding the commonalities in rail corrugation across diverse metro lines remains pivotal for elucidating its underlying mechanisms.The present study conducted extensive field surveys and tracking tests across 14 Chinese metro lines.By employing t-distributed stochastic neighbor embedding(t-SNE)for dimensional reduction and employing the unsupervised clustering algorithm DBSCAN,the research redefines the classification of metro rail corrugation based on characteristic information.The analysis encompassed spatial distribution and temporal evolution of this phenomenon.Findings revealed that floating slab tracks exhibited the highest proportion of rail corrugation at 47%.Notably,ordinary monolithic bed tracks employing damping fasteners were more prone to inducing rail corrugation.Corrugation primarily manifested in curve sections with radii between 300 and 500 m,featuring ordinary monolithic bed track and steel-spring floating slab track structures,with wavelengths typically between 30 and 120 mm.Stick–slip vibrations of the wheel–rail system maybe led to short-wavelength corrugations(40–60 mm),while longer wavelengths(200–300 mm)exhibited distinct fatigue damage characteristics,mainly observed in steel-spring floating slab tracks and small-radius curve sections of ordinary monolithic bed tracks and ladder sleeper tracks.A classification system comprising 57 correlated features categorized metro rail corrugation into four distinct types.These research outcomes serve as critical benchmarks for validating various theories pertaining to rail corrugation formation.
基金supported by the CNPC Science and Technology Major Project of the Fourteenth Five-Year Plan(2021DJ0101)the National Natural Science Foundation of China(U19B600302,41872148)。
文摘The Early Cambrian Yuertusi Formation(Є_(1)y)in the Tarim Basin of China deposits a continuously developed suite of organic-rich black mudstones,which constitute an important source of oil and gas reservoirs in the Paleozoic.However,its hydrocarbon generation and evolution characteristics and resource potential have long been constrained by deeply buried strata and previous research.In this paper,based on the newly obtained ultra-deep well drilling data,the hydrocarbon generation and expulsion model ofЄ_(1)y shale was established by using data-driven Monte Carlo simulation,upon which the hydrocarbon generation,expulsion,and retention amounts were calculated by using the diagenetic method.The research indicates that theЄ_(1)y shale reaches the hydrocarbon generation and expulsion threshold at equivalent vitrinite reflectances of 0.46%and 0.72%,respectively.The cumulative hydrocarbon generation is 68.88×10^(10)t,the cumulative hydrocarbon expulsion is 35.59×10^(10)t,and the cumulative residual hydrocarbon is 33.29×10^(10)t.This paper systematically and quantitatively calculates the hydrocarbon expulsion at various key geological periods for theЄ_(1)y source rocks in the study area for the first time,more precisely confirming that the black shale of theЄ_(1)y is the most significant source rock contributing to the marine oil and gas resources in the Tarim Basin,filling the gap in hydrocarbon expulsion calculation in the study area,and providing an important basis for the formation and distribution of Paleozoic hydrocarbon reservoirs.The prospect of deep ultra-deep oil and gas exploration in the Tarim Basin is promising.Especially,the large area of dolomite reservoirs under the Cambrian salt and source rock interiors are the key breakthrough targets for the next exploration in the Tarim Basin.
基金supported by the National Science Foundation of China(Grant Nos.12372361,12102427,12372335 and 12102202)the Fundamental Research Funds for the Central Universities(Grant No.30923010908)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0520).
文摘Shaped charge has been widely used for penetrating concrete.However,due to the obvious difference between the propagation of shock waves and explosion products in water and air,the theory governing the formation of shaped charge jets in water as well as the underwater penetration effect of concrete need to be studied.In this paper,we introduced a modified forming theory of an underwater hemispherical shaped charge,and investigated the behavior of jet formation and concrete penetration in both air and water experimentally and numerically.The results show that the modified jet forming theory predicts the jet velocity of the hemispherical liner with an error of less than 10%.The underwater jets exhibit at least 3%faster and 11%longer than those in air.Concrete shows different failure modes after penetration in air and water.The depth of penetration deepens at least 18.75%after underwater penetration,accompanied by deeper crater with 65%smaller radius.Moreover,cracks throughout the entire target are formed,whereas cracks exist only near the penetration hole in air.This comprehensive study provides guidance for optimizing the structure of shaped charge and improves the understanding of the permeability effect of concrete in water.
基金supported by the National Key Research and Development Program of China (Nos.2022YFC3702000 and 2022YFC3703500)the Key R&D Project of Zhejiang Province (No.2022C03146).
文摘Severe ground-level ozone(O_(3))pollution over major Chinese cities has become one of the most challenging problems,which have deleterious effects on human health and the sustainability of society.This study explored the spatiotemporal distribution characteristics of ground-level O_(3) and its precursors based on conventional pollutant and meteorological monitoring data in Zhejiang Province from 2016 to 2021.Then,a high-performance convolutional neural network(CNN)model was established by expanding the moment and the concentration variations to general factors.Finally,the response mechanism of O_(3) to the variation with crucial influencing factors is explored by controlling variables and interpolating target variables.The results indicated that the annual average MDA8-90th concentrations in Zhejiang Province are higher in the northern and lower in the southern.When the wind direction(WD)ranges from east to southwest and the wind speed(WS)ranges between 2 and 3 m/sec,higher O_(3) concentration prone to occur.At different temperatures(T),the O_(3) concentration showed a trend of first increasing and subsequently decreasing with increasing NO_(2) concentration,peaks at the NO_(2) concentration around 0.02mg/m^(3).The sensitivity of NO_(2) to O_(3) formation is not easily affected by temperature,barometric pressure and dew point temperature.Additionally,there is a minimum IRNO_(2) at each temperature when the NO_(2) concentration is 0.03 mg/m^(3),and this minimum IRNO_(2) decreases with increasing temperature.The study explores the response mechanism of O_(3) with the change of driving variables,which can provide a scientific foundation and methodological support for the targeted management of O_(3) pollution.
基金jointly funded by the National Natural Science Foundation of China(Grant Nos.42072178 and U2244207)the funding project of Northeast Geological S&T Innovation Center of China Geological Survey(Grant No.QCJJ2022-37)Geological Survey Project of China Geological Survey(Grant Nos.DD20190114,DD20230022,and DD20240045)。
文摘Organic-rich mudstones and shales,which hold significant potential for shale oil resources,characterize the first member of the Upper Cretaceous Qingshankou Formation(K_(2)qn~1)in the Sanzhao sag of the Songliao Basin,NE China.Focusing on 30 core samples obtained from the first shale oil parameter well,named SYY3 in the study area,we systematically analyzed the composition and stratigraphic distribution of the K_(2)qn~1 heteroatomic compounds using electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry(ESI FT-ICR MS),to assess their geological relevance to shale oil.The findings indicate that in the negative ion mode,the heteroatomic compounds predominantly consist of N_(1),N_(1)O_(1)-N_(1)O_(8),O_(1)-O_(8),O_(1)S_(1)-O_(6)S_(1);contrastingly,in the positive ion mode,they are primarily composed of N_(1)-N_(2),N_(1)O_(1)-N_(1)O_(4),N_(2)O_(1),O_(1)-O_(4),O_(1)S_(1)-O_(2)S_(1).Heteroatomic compound distributions vary significantly with depth in the negative ion mode,with minor variations in the positive ion mode.These distributions are categorized into three types based on the negative ion ratio((N_(1)+N_(1)O_(x))/O_(x)):TypeⅠ(>1.5),TypeⅡ(0.8-1.5),and TypeⅢ(<0.8);typesⅠandⅡgenerally exhibit a broader range of carbon numbers compared to TypeⅢ.The distribution of double bond equivalent(DBE)values across various sample types exhibits minimal variance,whereas that of carbon numbers shows substantial differences.Variations in heteroatomic compound compositions among the samples might have resulted from vertical sedimentary heterogeneity and differing biotic contributions.TypeⅢsamples show a decrease in total organic carbon(TOC)and free oil content(S_(1))compared to typesⅠandⅡ,but an increased oil saturation index(OSI),indicating a lower content of free oil but a higher proportion of movable oil.The reduced content of N-containing compounds implies lower paleolake productivity during deposition,leading to a reduction in TOC and S_(1).A lower TOC can enhance oil movability due to reduced oil adsorption,and the decreased presence of polar nitrogenous macromolecules with fewer highC-number heteroatomic compounds further promote shale oil movability.Additionally,the negative ion ratios of N1/N1O1and O2/O1 exhibit positive and negative correlations with the values of TOC,S_(1),and extractable organic matter(EOM),respectively,indicating that the salinity and redox conditions of the depositional water body are the primary controlling factors for both organic matter enrichment and shale oil accumulation.
基金supported by Natural Science Foundation of Liaoning Province of China under Grant No.2020-MS-085。
文摘The morphology and dimension of W phases play an important role in determining mechanical properties of Mg-RE-Zn(where RE denotes rare earth elements)alloys.In this study,theγ′platelet and W particle occurred in the aged Mg-2Dy-0.5Zn(at.%)alloys were investigated by aberration-corrected scanning transmission electron microscopy.A novel formation mechanism of W phase was proposed,and its effects on the morphology and dimension of W particle,as well as mechanical properties of Mg-2Dy-0.5Zn alloys,were also discussed particularly.Different from other Mg-RE-Zn alloys,the nucleation and growth of W particle in Mg-Dy-Zn alloys mainly depend on the precipitatedγ′platelet.Primarily,a mass of Dy and Zn solute atoms concentrated nearγ′platelet or between two adjacentγ′platelets can meet the composition requirement of W particle nucleation.Next,the smaller interfacial mismatch between W andγ′facilitates the nucleation and growth of W particle.Thirdly,the growth of W particle can be achieved by consuming the surroundingγ′platelets.The nucleation and growth mechanisms make W particles exhibit rectangular or leaf-like and remain at the nanoscale.The coexistence ofγ′platelets and nanoscale W particles,and some better interfacial relationships between phases,lead to a high strength-ductility synergy of alloy.The findings may provide some fundamental guidelines for the microstructure design and optimization of new-type Mg-based alloys.
基金funded by the Open Fund of Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences(Grant No.MGE2020KG10)the Open Fund of Key Laboratory of Submarine Geosciences,Ministry of Natural Resources(Grant No.KLSG 2208)+2 种基金the Natural Science Basic Research Program of Shaanxi(Grant No.2024JC-YBMS-227,2023-JC-QN-0287)the Postgraduate Innovation and Practice Ability Development Fund of Xi'an Shiyou University(No.YCS23113046)the National Natural Science Foundation of China(Grant No.41802128,42076219)。
文摘Tectonic activities significantly impact deep reservoir properties via sedimentary and diagenetic processes,and this is particularly true for lacustrine rift basins.The tectonic-sedimentary-diageneticreservoir system is crucial in deep reservoir exploration.This study examined the first member and upper submember of the second member of the Dongying Formation in the Bodong Low Uplift in the Bohai Bay Basin(East China),documenting the petrologic features and physical properties of reservoirs in different tectonic sub-units through integrated analysis of log and rock data,along with core observation.A mechanism for deep reservoir formation in lacustrine rift basins was developed to elucidate the sedimentary and diagenetic processes in complex tectonic settings.The results show that tectonic activities result in the occurrence of provenances in multiple directions and the existence of reservoirs at varying burial depths,as well as the significant diversity in sedimentary and diagenetic processes.The grain sizes of the sandstones,influenced by transport pathways rather than the topography of the sedimentary area,exhibit spatial complexity due to tectonic frameworks,which determine the initial pore content of reservoirs.However,the burial depth,influenced by subsequent tectonic subsidence,significantly impacts pore evolution during diagenesis.Based on the significant differences of reservoirs in slope zone,low uplift and depression zone,we establish different tectonic-diagenetic models in deep complex tectonic units of lacustrine rift basins.
基金funded by the National Natural Science Foundation of China(Grant Nos.41972313 and 41790453)the Engineering Research Center of Geothermal Resources Development Technology and Equipment,Ministry of Education,Jilin University。
文摘The 7 ka old Qixiangzhan lava flow(QXZ,Tianchi volcano)represents the last eruptive event before the 946 CE,caldera-forming‘Millennium’eruption(ME).Petrographic,whole rock,mineral composition,Sr-Nd isotopic data on QXZ show that:(a)the lava consists of two components,constituted by comenditic obsidian fragments immersed in a continuous,aphanitic component;(b)both components have the same geochemical and isotopic variations of the ME magma.The QXZ and ME comendites result from fractional crystallization and crustal assimilation processes.The temperature of the QXZ magma was about 790℃ and the depth of the magma reservoir around 7 km,the same values as estimated for ME.QXZ had a viscosity of 10^(5.5)-10^(9) Pa s and a velocity of 3-10 km/yr.The emplacement time was 0.5-1.6yr and the flow rate 0.48-1.50 m^(3)/s.These values lie within the range estimated for other rhyolitic flows worldwide.The QXZ lava originated through a mixed explosive-effusive activity with the obsidian resulting from the ascent of undercooling,degassing and the fragmentation of magma along the conduit walls,whereas the aphanitic component testifies to the less undercooled and segregated flow at the center of the conduit.The QXZ lava demonstrates the extensive history of the ME magma chamber.
基金supported by The Special Fund for Basic Scientific Research for Liaoning Provincial Governed Universities(2024JBZDZ004)Fishery Central Financial Support Project of Liaoning Province(2023)+5 种基金Liaoning Province Key Research and Development Plan(2023JH26/10200015)Natural Science Foundation of Liaoning Province(2020-KF-12-09)The Liaoning Provincial Education Commission Fund(LJKZ0730,QL202016)Applied Basic Research Project of Science and Technology Commission of Liaoning Province(2022JH2/101300187)Open Fund of Key Laboratory of Environmental Control Aquaculture of Ministry of Education(Dalian Ocean University)(202219)Liaoning Province Science and Technology Plan Joint Program(2024JH2/102600083).
文摘Formation control remains a critical challenge in cooperative multi-agent systems,particularly for Unmanned Underwater Vehicles(UUVs).Conventional approaches often suffer from several limitations,including reliance on global information,limited adaptability,high computational complexity,and poor scalability.To address these issues,we propose a novel bio-inspired formation control method for UUV swarms,drawing inspiration from the self-organizing behavior of fish schools.Our method integrates three key components:(1)a coordinated motion strategy without predefined targets that enables individual UUVs to align their movements via simple left or right rotations based solely on local neighbor interactions;(2)a target-directed movement strategy that guides UUVs toward specified regions;and(3)a dispersion control strategy that prevents overcrowding by regulating local spatial distributions.Simulation results confirm that the method achieves robust formation control and efficient area coverage using only local perception.Validation in a 9-UUV simulation environment demonstrates the approach’s flexibility,decentralization,and computational efficiency,making it particularly suitable for large-scale swarms with limited sensing and processing capabilities.
基金Supported by Leading Talent Program of Autonomous Region(2022TSYCLJ0070)PetroChina Prospective and Basic Technological Project(2021DJ0108)Natural Science Foundation for Outstanding Young People in Shandong Province(ZR2022YQ30).
文摘Based on the experimental results of casting thin section,low temperature nitrogen adsorption,high pressure mercury injection,nuclear magnetic resonance T2 spectrum,contact angle and oil-water interfacial tension,the relationship between pore throat structure and crude oil mobility characteristics of full particle sequence reservoirs in the Lower Permian Fengcheng Formation of Mahu Sag,Junggar Basin,are revealed.(1)With the decrease of reservoir particle size,the volume of pores connected by large throats and the volume of large pores show a decreasing trend,and the distribution and peak ranges of throat and pore radius shift to smaller size in an orderly manner.The upper limits of throat radius,porosity and permeability of unconventional reservoirs in Fengcheng Formation are approximately 0.7μm,8%and 0.1×10^(−3)μm^(2),respectively.(2)As the reservoir particle size decreases,the distribution and peak ranges of pores hosting retained oil and movable oil are shifted to a smaller size in an orderly manner.With the increase of driving pressure,the amount of retained and movable oil of the larger particle reservoir samples shows a more obvious trend of decreasing and increasing,respectively.(3)With the increase of throat radius,the driving pressure of reservoir with different particle levels presents three stages,namely rapid decrease,slow decrease and stabilization.The oil driving pressures of various reservoirs and the differences of them decrease with the increase of temperature and obviously decrease with the increase of throat radius.According to the above experimental analysis,it is concluded that the deep shale oil of Fengcheng Formation in Mahu Sag has great potential for production under geological conditions.