期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Strengthened Dominance Relation NSGA-Ⅲ Algorithm Based on Differential Evolution to Solve Job Shop Scheduling Problem 被引量:1
1
作者 Liang Zeng Junyang Shi +2 位作者 Yanyan Li Shanshan Wang Weigang Li 《Computers, Materials & Continua》 SCIE EI 2024年第1期375-392,共18页
The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various ... The job shop scheduling problem is a classical combinatorial optimization challenge frequently encountered in manufacturing systems.It involves determining the optimal execution sequences for a set of jobs on various machines to maximize production efficiency and meet multiple objectives.The Non-dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ)is an effective approach for solving the multi-objective job shop scheduling problem.Nevertheless,it has some limitations in solving scheduling problems,including inadequate global search capability,susceptibility to premature convergence,and challenges in balancing convergence and diversity.To enhance its performance,this paper introduces a strengthened dominance relation NSGA-Ⅲ algorithm based on differential evolution(NSGA-Ⅲ-SD).By incorporating constrained differential evolution and simulated binary crossover genetic operators,this algorithm effectively improves NSGA-Ⅲ’s global search capability while mitigating pre-mature convergence issues.Furthermore,it introduces a reinforced dominance relation to address the trade-off between convergence and diversity in NSGA-Ⅲ.Additionally,effective encoding and decoding methods for discrete job shop scheduling are proposed,which can improve the overall performance of the algorithm without complex computation.To validate the algorithm’s effectiveness,NSGA-Ⅲ-SD is extensively compared with other advanced multi-objective optimization algorithms using 20 job shop scheduling test instances.The experimental results demonstrate that NSGA-Ⅲ-SD achieves better solution quality and diversity,proving its effectiveness in solving the multi-objective job shop scheduling problem. 展开更多
关键词 multi-objective job shop scheduling non-dominated sorting genetic algorithm differential evolution simulated binary crossover
在线阅读 下载PDF
Multi-objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm 被引量:14
2
作者 WANG Congzhe FANG Yuefa GUO Sheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第4期702-715,共14页
Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitati... Dimensional synthesis is one of the most difficult issues in the field of parallel robots with actuation redundancy. To deal with the optimal design of a redundantly actuated parallel robot used for ankle rehabilitation, a methodology of dimensional synthesis based on multi-objective optimization is presented. First, the dimensional synthesis of the redundant parallel robot is formulated as a nonlinear constrained multi-objective optimization problem. Then four objective functions, separately reflecting occupied space, input/output transmission and torque performances, and multi-criteria constraints, such as dimension, interference and kinematics, are defined. In consideration of the passive exercise of plantar/dorsiflexion requiring large output moment, a torque index is proposed. To cope with the actuation redundancy of the parallel robot, a new output transmission index is defined as well. The multi-objective optimization problem is solved by using a modified Differential Evolution(DE) algorithm, which is characterized by new selection and mutation strategies. Meanwhile, a special penalty method is presented to tackle the multi-criteria constraints. Finally, numerical experiments for different optimization algorithms are implemented. The computation results show that the proposed indices of output transmission and torque, and constraint handling are effective for the redundant parallel robot; the modified DE algorithm is superior to the other tested algorithms, in terms of the ability of global search and the number of non-dominated solutions. The proposed methodology of multi-objective optimization can be also applied to the dimensional synthesis of other redundantly actuated parallel robots only with rotational movements. 展开更多
关键词 ankle rehabilitation parallel robot multi-objective optimization differential evolution algorithm
在线阅读 下载PDF
Multi-Objective Hybrid Sailfish Optimization Algorithm for Planetary Gearbox and Mechanical Engineering Design Optimization Problems
3
作者 Miloš Sedak Maja Rosic Božidar Rosic 《Computer Modeling in Engineering & Sciences》 2025年第2期2111-2145,共35页
This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Op... This paper introduces a hybrid multi-objective optimization algorithm,designated HMODESFO,which amalgamates the exploratory prowess of Differential Evolution(DE)with the rapid convergence attributes of the Sailfish Optimization(SFO)algorithm.The primary objective is to address multi-objective optimization challenges within mechanical engineering,with a specific emphasis on planetary gearbox optimization.The algorithm is equipped with the ability to dynamically select the optimal mutation operator,contingent upon an adaptive normalized population spacing parameter.The efficacy of HMODESFO has been substantiated through rigorous validation against estab-lished industry benchmarks,including a suite of Zitzler-Deb-Thiele(ZDT)and Zeb-Thiele-Laumanns-Zitzler(DTLZ)problems,where it exhibited superior performance.The outcomes underscore the algorithm’s markedly enhanced optimization capabilities relative to existing methods,particularly in tackling highly intricate multi-objective planetary gearbox optimization problems.Additionally,the performance of HMODESFO is evaluated against selected well-known mechanical engineering test problems,further accentuating its adeptness in resolving complex optimization challenges within this domain. 展开更多
关键词 multi-objective optimization planetary gearbox gear efficiency sailfish optimization differential evolution hybrid algorithms
在线阅读 下载PDF
基于批次拆分机制的IMODE算法求解成品卷烟生产调度问题
4
作者 安裕强 张源 +1 位作者 邹平 陶翼飞 《中国机械工程》 北大核心 2025年第8期1893-1903,共11页
针对成品卷烟生产调度问题,结合卷烟企业生产实际,以承担成品卷烟生产任务的卷包车间为研究对象,将其转换为异构并行机分批调度问题,以卷包机组的总切换次数和同停综合评价时间为目标建立符合成品卷烟生产工况的仿真优化模型,并设计一... 针对成品卷烟生产调度问题,结合卷烟企业生产实际,以承担成品卷烟生产任务的卷包车间为研究对象,将其转换为异构并行机分批调度问题,以卷包机组的总切换次数和同停综合评价时间为目标建立符合成品卷烟生产工况的仿真优化模型,并设计一种基于批次拆分机制的改进多目标差分进化(IMODE)算法进行求解。为满足分批生产特点,该算法采用一种不规则的矩阵编码方式表示可行解,基于反向批次学习策略生成初始种群,通过矩阵向量间的差分运算更新种群个体,采用批次拆分机制详细划分批次批量,并对子代个体进行邻域搜索,在选择操作中引入改进精英保留策略,以提高算法的寻优能力。最后基于不同订单量和车间规模的卷烟企业生产实例进行实验对比,验证了IMODE算法的性能及其在解决成品卷烟生产调度问题上的有效性。 展开更多
关键词 异构并行机 批次拆分 总切换次数 同停综合评价时间 多目标差分进化算法
在线阅读 下载PDF
Evolutionary Trajectory Planning for an Industrial Robot 被引量:6
5
作者 R.Saravanan S.Ramabalan +1 位作者 C.Balamurugan A.Subash 《International Journal of Automation and computing》 EI 2010年第2期190-198,共9页
This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers th... This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution (MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor) are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely, optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed. 展开更多
关键词 multi-objective optimal trajectory planning oscillating obstacles elitist non-dominated sorting genetic algorithm (NSGA-II) multi-objective differential evolution mode multi-objective performance metrics.
在线阅读 下载PDF
Dynamic multi-objective differential evolution algorithm based on the information of evolution progress 被引量:4
6
作者 HOU Ying WU YiLin +2 位作者 LIU Zheng HAN HongGui WANG Pu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第8期1676-1689,共14页
The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy... The multi-objective differential evolution(MODE)algorithm is an effective method to solve multi-objective optimization problems.However,in the absence of any information of evolution progress,the optimization strategy of the MODE algorithm still appears as an open problem.In this paper,a dynamic multi-objective differential evolution algorithm,based on the information of evolution progress(DMODE-IEP),is developed to improve the optimization performance.The main contributions of DMODE-IEP are as follows.First,the information of evolution progress,using the fitness values,is proposed to describe the evolution progress of MODE.Second,the dynamic adjustment mechanisms of evolution parameter values,mutation strategies and selection parameter value based on the information of evolution progress,are designed to balance the global exploration ability and the local exploitation ability.Third,the convergence of DMODE-IEP is proved using the probability theory.Finally,the testing results on the standard multi-objective optimization problem and the wastewater treatment process verify that the optimization effect of DMODE-IEP algorithm is superior to the other compared state-of-the-art multi-objective optimization algorithms,including the quality of the solutions,and the optimization speed of the algorithm. 展开更多
关键词 information of evolution progress multi-objective differential evolution algorithm optimization effect optimization speed CONVERGENCE
原文传递
Multi-objective differential evolution with diversity enhancement 被引量:2
7
作者 Ponnuthurai-Nagaratnam SUGANTHAN 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2010年第7期538-543,共6页
Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. Howev... Multi-objective differential evolution (MODE) is a powerful and efficient population-based stochastic search technique for solving multi-objective optimization problems in many scientific and engineering fields. However, premature convergence is the major drawback of MODE, especially when there are numerous local Pareto optimal solutions. To overcome this problem, we propose a MODE with a diversity enhancement (MODE-DE) mechanism to prevent the algorithm becoming trapped in a locally optimal Pareto front. The proposed algorithm combines the current population with a number of randomly generated parameter vectors to increase the diversity of the differential vectors and thereby the diversity of the newly generated offspring. The performance of the MODE-DE algorithm was evaluated on a set of 19 benchmark problem codes available from http://www3.ntu.edu.sg/home/epnsugan/. With the proposed method, the performances were either better than or equal to those of the MODE without the diversity enhancement. 展开更多
关键词 multi-objective evolutionary algorithm (MOEA) multi-objective differential evolution (mode) Diversity enhancement
原文传递
基于差分进化算法的转子有限元模型修正
8
作者 黄天一 梁杰 +2 位作者 姚爽 张浩 师占群 《中国测试》 北大核心 2025年第6期141-149,共9页
在建模过程中,受限于测量环境和精度,转子结构设定参数与实际值存在较大差异,导致基于模型的理论计算与测量值不相符。为解决此问题,提出一种结合实验模态与差分进化算法相结合的模型修正方法。首先进行模态频率对转子材料参数的灵敏度... 在建模过程中,受限于测量环境和精度,转子结构设定参数与实际值存在较大差异,导致基于模型的理论计算与测量值不相符。为解决此问题,提出一种结合实验模态与差分进化算法相结合的模型修正方法。首先进行模态频率对转子材料参数的灵敏度分析,建立基于模态频率和模态振型置信度的目标函数。运用差分进化算法修正模型的质量矩阵和刚度矩阵,进而根据实验模态频率和阻尼比确定瑞利阻尼矩阵。为验证方法的适用性,对滑动轴承转子实验台的有限元模型进行修正。修正后的模型与初始模型相比,计算的模态频率误差小于0.02%,修正模型计算的模态振型与实验值的模态置信区间均在0.9以上。为验证方法的准确性,对修正后的模型进行频响函数和不平衡响应仿真,仿真结果与实验结果的误差均不超过2.5%。该方法有效提高转子系统模型的精确性,为动力学分析和工程应用提供一定的实际参考。 展开更多
关键词 差分进化算法 实验模态 转子动力学 模型修正
在线阅读 下载PDF
差分进化优化的风电功率混合预测模型
9
作者 陈梦娇 陈为真 张岳 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期217-226,共10页
针对风速波动性大和随机性强导致风电功率预测精度不高的问题,构建一种融合变分模态分解、卷积循环神经网络和注意力机制的混合预测模型。根据数值天气预报和测风塔实测数据采用皮尔逊相关系数筛选出与风电功率强相关性的特征;通过变分... 针对风速波动性大和随机性强导致风电功率预测精度不高的问题,构建一种融合变分模态分解、卷积循环神经网络和注意力机制的混合预测模型。根据数值天气预报和测风塔实测数据采用皮尔逊相关系数筛选出与风电功率强相关性的特征;通过变分模态分解将原始序列分解成不同频率的模态分量,利用差分进化算法进行参数优化,寻找最优模态数;然后将其输入到卷积循环神经网络中。通过引入注意力机制,进一步捕获序列中的潜在关键信息,实现风电功率的精准预测。实验分析及对比结果表明,该模型在风电功率预测中有着更高的预测精度,基本满足实际风电功率的预测要求。 展开更多
关键词 风电功率预测 变分模态分解 卷积循环神经网络 注意力机制 差分进化算法
在线阅读 下载PDF
Multi-objective optimization for draft scheduling of hot strip mill 被引量:2
10
作者 李维刚 刘相华 郭朝晖 《Journal of Central South University》 SCIE EI CAS 2012年第11期3069-3078,共10页
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ... A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production. 展开更多
关键词 hot strip mill draft scheduling multi-objective optimization multi-objective differential evolution algorithm based ondecomposition mode/D) Pareto-optimal front
在线阅读 下载PDF
基于ADE优化的IPMSM全速域无传感器控制 被引量:1
11
作者 姚国仲 郝剑 +3 位作者 王贵勇 李涛 董文龙 詹益嘉 《传感器与微系统》 CSCD 北大核心 2024年第5期105-108,112,共5页
为了实现内置式永磁同步电机(IPMSM)全速域的无传感器控制和切换速域的平滑过渡,提出了一种基于自适应差分进化(ADE)算法优化的复合控制方法。分别在零低速域、中高速域采用旋转高频电压注入法和滑模观测器法来对电机转速和转子位置进... 为了实现内置式永磁同步电机(IPMSM)全速域的无传感器控制和切换速域的平滑过渡,提出了一种基于自适应差分进化(ADE)算法优化的复合控制方法。分别在零低速域、中高速域采用旋转高频电压注入法和滑模观测器法来对电机转速和转子位置进行估算,并在切换速域采用基于ADE算法的权重系数优化法来实现上述两种控制方法的平滑切换,从而实现IPMSM全速域无传感器控制。仿真结果表明:提出的复合控制方法能够实现电机全速域的无感控制和切换速域的平滑过渡,且具有良好的稳定性。 展开更多
关键词 内置式永磁同步电机 自适应差分进化算法 旋转高频电压注入法 滑模观测器
在线阅读 下载PDF
Performance Evaluation and Comparison of Multi - Objective Optimization Algorithms for the Analytical Design of Switched Reluctance Machines
12
作者 Shen Zhang Sufei Li +1 位作者 Ronald G.Harley Thomas G.Habetler 《CES Transactions on Electrical Machines and Systems》 2017年第1期58-65,共8页
This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of... This paper systematically evaluates and compares three well-engineered and popular multi-objective optimization algorithms for the design of switched reluctance machines.The multi-physics and multi-objective nature of electric machine design problems are discussed,followed by benchmark studies comparing generic algorithms(GA),differential evolution(DE)algorithms and particle swarm optimizations(PSO)on a 6/4 switched reluctance machine design with seven independent variables and a strong nonlinear multi-objective Pareto front.To better quantify the quality of the Pareto fronts,five primary quality indicators are employed to serve as the algorithm testing metrics.The results show that the three algorithms have similar performances when the optimization employs only a small number of candidate designs or ultimately,a significant amount of candidate designs.However,DE tends to perform better in terms of convergence speed and the quality of Pareto front when a relatively modest amount of candidates are considered. 展开更多
关键词 Design methodology differential evolution(DE) generic algorithm(GA) multi-objective optimization algorithms particle swarm optimization(PSO) switched reluctance machines
在线阅读 下载PDF
IPMSM全速域无位置传感器控制策略 被引量:1
13
作者 诸德宏 赵铭钰 《组合机床与自动化加工技术》 北大核心 2024年第3期96-100,共5页
为了实现内置式永磁同步电机(IPMSM)无位置传感器系统全速域运行,提出一种改进型IPMSM复合控制策略。首先,在零低速域选用高频旋转电压注入法实现对电机转速和转子位置的估计;其次,在中高速域,为了削弱传统滑模观测器中开关函数造成的... 为了实现内置式永磁同步电机(IPMSM)无位置传感器系统全速域运行,提出一种改进型IPMSM复合控制策略。首先,在零低速域选用高频旋转电压注入法实现对电机转速和转子位置的估计;其次,在中高速域,为了削弱传统滑模观测器中开关函数造成的系统抖振问题,构造新型超螺旋滑模观测器,提高系统的观测精度;最后,引入差分进化算法优化过渡速域权重系数,实现不同观测方法间的合理切换,完成全速域下转子位置和转速的高精度辨识。研究结果表明,所提算法能够实现电机全速域运行,且具有良好的动态性能。 展开更多
关键词 内置式永磁同步电机 无位置传感器 旋转高频电压注入 二阶滑模观测器 差分进化算法
在线阅读 下载PDF
基于DE-VMD和GMDE的往复压缩机轴承间隙故障诊断方法 被引量:4
14
作者 李彦阳 蔡剑华 曲孝海 《机电工程》 CAS 北大核心 2024年第4期683-690,共8页
针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化... 针对往复压缩机轴承间隙故障特征提取困难、识别准确率不高等问题,提出了差分进化算法优化变分模态分解方法和广义多尺度散布熵相结合的往复压缩机间隙故障诊断方法。首先,采用差分进化算法对变分模态分解算法的两个核心参数进行了优化,并利用优化后的变分模态分解方法对轴承间隙振动信号进行了信号分解和重构处理;然后,研究了多尺度散布熵的粗粒化过程,通过将方差粗粒化代替均值粗粒化,进行了多尺度处理,构建了广义多尺度散布熵算法,利用广义多尺度散布熵算法对重构信号进行了故障特征提取分析;最后,设计了核极限学习机模型对故障特征向量集进行了分类识别,完成了往复压缩机轴承间隙不同故障状态的智能诊断研究。研究结果表明,该故障诊断方法的识别准确率高达97%,高效地实现了轴承不同种类故障的智能诊断目的。 展开更多
关键词 往复压缩机 轴承故障诊断 变分模态分解 广义多尺度散布熵 核极限学习机 差分进化算法
在线阅读 下载PDF
回采工作面瓦斯涌出量VMD-DE-RVM区间预测方法 被引量:16
15
作者 代巍 付华 +1 位作者 冀常鹏 王英杰 《中国安全科学学报》 CAS CSCD 北大核心 2018年第9期109-115,共7页
为有效、准确地预测回采工作面绝对瓦斯涌出量,基于变分模态分解(VMD)方法;差分进化(DE)算法和相关向量机(RVM)原理,提出回采工作面绝对瓦斯涌出量的VMD—DE-RVM区间预测方法;通过VMD方法将绝对瓦斯涌出量分解为若干固有模态分量并分析... 为有效、准确地预测回采工作面绝对瓦斯涌出量,基于变分模态分解(VMD)方法;差分进化(DE)算法和相关向量机(RVM)原理,提出回采工作面绝对瓦斯涌出量的VMD—DE-RVM区间预测方法;通过VMD方法将绝对瓦斯涌出量分解为若干固有模态分量并分析其局部特征,分别建立每个固有模态分量的RVM预测模型,并通过DE算法优化模型参数以提高预测精度;加权叠加各个分量的预测结果得到绝对瓦斯涌出量预测结果,并将其与经验模态分解方法所得结果对比。结果表明:应用该方法预测回采工作面瓦斯涌出量,能弱化瓦斯涌出量的局部特征,得到置信度为95%时涌出量预测区间有效度为100%,平均绝对误差为0.096m^3/min,平均相对误差为2.43%,预测精度有所提高。 展开更多
关键词 绝对瓦斯涌出量 区间预测 变分模态分解(VMD) 相关向量机(RVM) 差分进化(DE)算法
原文传递
基于改进差分进化算法的滑模控制参数整定 被引量:11
16
作者 黄健 周端 《控制工程》 CSCD 北大核心 2018年第3期484-487,共4页
针对广义非线性系统中滑模控制器参数的整定问题,提出了一种新的基于差分进化优化算法的参数整定方法。先对广义非线性系统设计了一种滑模鲁棒控制器;接着给出了基于跟踪误差、控制力矩和收敛时间的参数整定优化指标,并以该指标为适... 针对广义非线性系统中滑模控制器参数的整定问题,提出了一种新的基于差分进化优化算法的参数整定方法。先对广义非线性系统设计了一种滑模鲁棒控制器;接着给出了基于跟踪误差、控制力矩和收敛时间的参数整定优化指标,并以该指标为适应值,利用改进差分进化优化算法对滑模控制器的参数进行整定。数值仿真结果显示,差分进化算法具有更快的收敛速度.能使闭环系统具有更好的动态性能。 展开更多
关键词 关键字 非线性系统 滑模控制 参数整定 差分进化算法
原文传递
自适应双模式差分进化算法 被引量:3
17
作者 呼忠权 王洪斌 李硕 《计算机工程与设计》 北大核心 2015年第8期2250-2254,2270,共6页
为解决无约束全局最优问题,提出自适应双变异模式差分进化算法。该算法的变异规则结合差分进化算法中的两种基本变异模式,通过采用自适应缩放因子和交叉概率,来改善种群的多样性,平衡全局搜索和局部寻优能力。对高维benchmark典型函数... 为解决无约束全局最优问题,提出自适应双变异模式差分进化算法。该算法的变异规则结合差分进化算法中的两种基本变异模式,通过采用自适应缩放因子和交叉概率,来改善种群的多样性,平衡全局搜索和局部寻优能力。对高维benchmark典型函数进行数值仿真,与另外5种算法进行比较,比较结果表明,该算法具有较高的搜索精度、收敛速度以及较强的跳出局部最优解的能力。 展开更多
关键词 差分进化算法 进化模式 自适应 收敛速度 高维问题
在线阅读 下载PDF
CCBII制动机系统模式追踪与多故障诊断技术 被引量:3
18
作者 黄志武 宾睿 +1 位作者 杨迎泽 刘伟荣 《铁道学报》 EI CAS CSCD 北大核心 2014年第3期67-74,共8页
由于CCBII制动机具有多种工作模式,工况复杂,工作部件繁多且耦合性强等特点,经常有多故障并发。传统的故障诊断技术难以对其进行多故障诊断。本文在基于解析冗余关系的诊断技术上,引入差分进化算法进行多故障检测与定位。首先构建制动... 由于CCBII制动机具有多种工作模式,工况复杂,工作部件繁多且耦合性强等特点,经常有多故障并发。传统的故障诊断技术难以对其进行多故障诊断。本文在基于解析冗余关系的诊断技术上,引入差分进化算法进行多故障检测与定位。首先构建制动机各工作模式模型,并推导系统的扩展全局解析冗余关系以获得模式转变特征表和系统故障特征表,再引入一致性向量比较特征表,实现系统的模式追踪。当模式追踪失败后,构建候选故障假设集,对每个候选故障设计基于差分进化算法参数估计器,通过比较候选故障参数的平均适应函数值,定位同时发生的多个故障,实现制动机系统多故障实时在线检测。最后通过仿真实验和实际应用验证本文方法的有效性。 展开更多
关键词 多故障诊断 差分进化算法 模式追踪 CCBII制动机
在线阅读 下载PDF
基于双模式变异策略的改进遗传算法 被引量:6
19
作者 梁兴建 詹志辉 《山东大学学报(工学版)》 CAS 北大核心 2014年第6期1-7,共7页
针对基本遗传算法寻优速度慢且易陷入局部最优的缺陷,提出了一种基于双模式变异策略的改进遗传算法。在标准变异的基础上引入个体线性差分变异思想形成双变异模式,同时利用控制参数对两种变异模式加以平衡。通过10个基准测试函数仿真实... 针对基本遗传算法寻优速度慢且易陷入局部最优的缺陷,提出了一种基于双模式变异策略的改进遗传算法。在标准变异的基础上引入个体线性差分变异思想形成双变异模式,同时利用控制参数对两种变异模式加以平衡。通过10个基准测试函数仿真实验,结果表明本改进算法在寻优速度和全局收敛能力上都有较大的提高。 展开更多
关键词 遗传算法 双模式变异策略 差分演化 优化变异 算法改进
原文传递
基于VMD与DE-Elman的瓦斯浓度动态预测 被引量:8
20
作者 付华 代巍 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2018年第4期692-697,共6页
针对瓦斯浓度时间序列的复杂性、非线性、非平稳性特征,提出基于变分模态分解和差分进化优化的Elman网络瓦斯浓度动态预测方法.通过变分模态分解理论分析瓦斯浓度时间序列的局部特征以弱化瓦斯浓度的复杂性、非平稳性及非线性特征,对变... 针对瓦斯浓度时间序列的复杂性、非线性、非平稳性特征,提出基于变分模态分解和差分进化优化的Elman网络瓦斯浓度动态预测方法.通过变分模态分解理论分析瓦斯浓度时间序列的局部特征以弱化瓦斯浓度的复杂性、非平稳性及非线性特征,对变分模态分解得到的固有模态分量分别建立Elman非线性预测模型,并通过差分进化优化预测模型参数以提高预测精度;将各个模型预测结果叠加拟合得到瓦斯浓度预测结果.研究结果表明:该方法可以实现对工作面瓦斯浓度的良好预测,预测结果合理并且满足工程的实际需要. 展开更多
关键词 瓦斯浓度 变分模态分解 局部特征分析 Elman动态预测 差分进化算法
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部