期刊文献+
共找到2,778篇文章
< 1 2 139 >
每页显示 20 50 100
基于机器学习Voting集成算法的慢性咳嗽中医证候诊断模型构建
1
作者 白逸晨 秦苏杨 +6 位作者 周崇云 史利卿 季坤 张楚楚 李盼飞 崔唐明 李海燕 《中医杂志》 北大核心 2025年第11期1119-1127,共9页
目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>... 目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>50的证候类型所属病例数据形成慢性咳嗽中医证候诊断专病数据集。采用合成少数类过采样技术(SMOTE)平衡数据后,构建Logistic回归(LR)、决策树(DT)、多层感知机(MLP)和引导聚集(Bagging)4种基础模型,通过硬投票方式融合为Voting集成算法模型,并运用准确率、召回率、精确率、F1分数、受试者工作特征(ROC)曲线、ROC曲线下面积(AUC)及混淆矩阵评价模型性能。结果921例慢性咳嗽患者例数>50的证型为湿热郁肺证(294例)、风邪伏肺证(103例)、寒饮伏肺证(102例)、痰热郁肺证(64例)、肺阳亏虚证(54例)、痰湿阻肺证(53例)6种证候类型,共计670例,故为专病数据集。6种证候类型的患者高频症状可见咳嗽、咳痰、异味诱咳、咽痒、咽痒则咳、冷风诱咳等。构建的4种基础模型中,MLP模型的中医证候诊断效能最佳(测试集中准确率0.9104,AUC 0.9828);与4种基础模型相比,Voting集成算法模型性能表现最优,在训练集和测试中准确率分别为0.9289和0.9253,过拟合差异为0.0036,测试集中AUC值为0.9836,较所有基础模型的准确率和AUC均有所改善,且对湿热郁肺证(AUC 0.9984)和风邪伏肺证(AUC 0.9970)诊断效果更优。结论Voting集成算法有效整合多种机器学习优势,集成后的慢性咳嗽中医证候诊断模型效能得到了进一步优化,具有较高的准确性和更强的泛化能力。 展开更多
关键词 慢性咳嗽 机器学习 证候 诊断模型 voting集成算法
原文传递
基于Voting集成算法的中药抗炎预测模型的构建
2
作者 乔塬淏 谢虹亭 +5 位作者 胡馨雨 安宸 刘泽豪 陈美池 薛鹏 朱世杰 《中草药》 北大核心 2025年第15期5529-5537,共9页
目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等... 目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等特征的规范化数据库。基于决策树、支持向量机、轻量级梯度提升机等6种基础模型构建Voting集成模型,并以七折交叉验证和基于树结构的贝叶斯优化算法超参数优化提升模型性能。利用SHAP(SHapley Additive ex Planations)解释器可视化关键药性特征。结果经筛选后,共纳入522味抗炎中药构建数据库。Voting集成模型综合性能最优,F1分数为0.797,AUC值为0.77,较单一模型平均提升7.4%。SHAP分析表明使中药发挥抗炎作用的重要特征分别是“脾经”“甘味”“补益”等,使中药不具有抗炎作用的重要特征为“性温或平”和“毒性”。结论首次通过集成算法构建具有良好性能的中药抗炎作用预测模型,为中医药与机器学习结合的研究模式提供了新思路。 展开更多
关键词 voting集成算法 中药 抗炎 机器学习 药性 四气五味
原文传递
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
3
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted Ensemble voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
An Overlap Sharding Blockchain:Reputation Voting Enabling Security and Efficiency for Dynamic AP Management in 6G UCAN
4
作者 Wang Jupen Hu Bo +2 位作者 Chen Shanzhi Zhang Yiting Wang Yilei 《China Communications》 2025年第7期208-219,共12页
Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a... Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a bottleneck to the widespread adoption of UCAN in 6G.In this paper,we propose Overlap Shard,a blockchain framework based on a novel reputation voting(RV)scheme,to dynamically manage the APs in UCAN.AP nodes in UCAN are distributed across multiple shards based on the RV scheme.That is,nodes with good reputation(virtuous behavior)are likely to be selected in the overlap shard.The RV mechanism ensures the security of UCAN because most APs adopt virtuous behaviors.Furthermore,to improve the efficiency of the Overlap Shard,we reduce cross-shard transactions by introducing core nodes.Specifically,a few nodes are overlapped in different shards,which can directly process the transactions in two shards instead of crossshard transactions.This greatly increases the speed of transactions between shards and thus the throughput of the overlap shard.The experiments show that the throughput of the overlap shard is about 2.5 times that of the non-sharded blockchain. 展开更多
关键词 blockchain reputation voting scheme sharding 6G
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
5
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
Optimized Deep Feature Learning with Hybrid Ensemble Soft Voting for Early Breast Cancer Histopathological Image Classification
6
作者 Roseline Oluwaseun Ogundokun Pius Adewale Owolawi Chunling Tu 《Computers, Materials & Continua》 2025年第9期4869-4885,共17页
Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine lea... Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine learning(ML)methods struggle with intra-class heterogeneity and inter-class similarity,necessitating more robust classification models.This study presents an ML classifier ensemble hybrid model for deep feature extraction with deep learning(DL)and Bat Swarm Optimization(BSO)hyperparameter optimization to improve breast cancer histopathology(BCH)image classification.A dataset of 804 Hematoxylin and Eosin(H&E)stained images classified as Benign,in situ,Invasive,and Normal categories(ICIAR2018_BACH_Challenge)has been utilized.ResNet50 was utilized for feature extraction,while Support Vector Machines(SVM),Random Forests(RF),XGBoosts(XGB),Decision Trees(DT),and AdaBoosts(ADB)were utilized for classification.BSO was utilized for hyperparameter optimization in a soft voting ensemble approach.Accuracy,precision,recall,specificity,F1-score,Receiver Operating Characteristic(ROC),and Precision-Recall(PR)were utilized for model performance metrics.The model using an ensemble outperformed individual classifiers in terms of having greater accuracy(~90.0%),precision(~86.4%),recall(~86.3%),and specificity(~96.6%).The robustness of the model was verified by both ROC and PR curves,which showed AUC values of 1.00,0.99,and 0.98 for Benign,Invasive,and in situ instances,respectively.This ensemble model delivers a strong and clinically valid methodology for breast cancer classification that enhances precision and minimizes diagnostic errors.Future work should focus on explainable AI,multi-modal fusion,few-shot learning,and edge computing for real-world deployment. 展开更多
关键词 Breast cancer classification ensemble learning deep learning bat swarm optimization HISTOPATHOLOGY soft voting
在线阅读 下载PDF
Construction of multi-model ensemble prediction for ENSO based on neural network
7
作者 Yuan Ou Ting Liu Tao Lian 《Acta Oceanologica Sinica》 2025年第8期10-19,共10页
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana... In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast. 展开更多
关键词 El Niño-Southern Oscillation(ENSO) multi-model ensemble mean neural network
在线阅读 下载PDF
Ingel’s Theory on International Fairness Based on Simplified Voting System of UNSC
8
作者 Yinge Li 《Sociology Study》 2025年第4期188-203,共16页
According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting th... According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting the will of all Member States.Combining interdisciplinary,qualitative and quantitative research methods,in response to the dilemma of Security Council voting reform,this article suggests retaining the Security Council voting system and recommending a simplified model of“basic and weighted half”for voting allocation.This model not only inherits the authorized voting system of the collective security system,but also follows the allocation system of sovereignty equality in the Charter.It can also achieve the“draw on the advantages and avoid disadvantages”of Member States towards international development,promote the transformation of“absolute equality”of overall consistency into“real fairness”relative to individual contributions,and further promote the development of international law in the United Nations voting system. 展开更多
关键词 United Nations Security Council authorized voting model and formula Security Council reform international law research
在线阅读 下载PDF
基于voting集成的智能电能表故障多分类方法
9
作者 肖宇 黄瑞 +3 位作者 刘谋海 刘小平 袁明 高云鹏 《电测与仪表》 北大核心 2024年第7期197-203,共7页
为提升智能电能表故障准确分类能力,助力维护人员迅速排除故障,提出基于投票法voting集成的智能电能表故障多分类方法。针对实际智能电能表故障数据进行编码预处理,基于皮尔逊系数法筛选智能电能表故障分类关键影响因素,结合合成少数类... 为提升智能电能表故障准确分类能力,助力维护人员迅速排除故障,提出基于投票法voting集成的智能电能表故障多分类方法。针对实际智能电能表故障数据进行编码预处理,基于皮尔逊系数法筛选智能电能表故障分类关键影响因素,结合合成少数类过采样技术(synthetic minority oversampling technique, SMOTE)算法解决数据类别不平衡问题,由此建立模型所需数据集,再通过投票法进行模型融合,结合粒子群PSO(particle swarm optimization)确定各基模型的权重,据此构建基于极限梯度提升树(extreme gradient boosting trees, XGBT)、K近邻(k-nearest neighbor, KNN)和朴素贝叶斯(naive bayes, NB)模型的智能电能表故障多分类方法。实测实验结果表明:所提出方法能有效实现智能电能表的故障快速准确分类,与现有方法相比,在智能电能表的故障分类精确率、召回率及F1-Score均有明显提升。 展开更多
关键词 智能电能表 故障分类 voting集成 粒子群寻优 多分类
在线阅读 下载PDF
Identification of cell surface markers for acute myeloid leukemia prognosis based on multi-model analysis 被引量:2
10
作者 Jiaqi Tang Lin Luo +18 位作者 Bakwatanisa Bosco Ning Li Bin Huang Rongrong Wu Zihan Lin Ming Hong Wenjie Liu Lingxiang Wu Wei Wu Mengyan Zhu Quanzhong Liu Peng Xia Miao Yu Diru Yao Sali Lv Ruohan Zhang Wentao Liu Qianghu Wang Kening Li 《Journal of Biomedical Research》 CAS CSCD 2024年第4期397-412,共16页
Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been s... Given the extremely high inter-patient heterogeneity of acute myeloid leukemia(AML),the identification of biomarkers for prognostic assessment and therapeutic guidance is critical.Cell surface markers(CSMs)have been shown to play an important role in AML leukemogenesis and progression.In the current study,we evaluated the prognostic potential of all human CSMs in 130 AML patients from The Cancer Genome Atlas(TCGA)based on differential gene expression analysis and univariable Cox proportional hazards regression analysis.By using multi-model analysis,including Adaptive LASSO regression,LASSO regression,and Elastic Net,we constructed a 9-CSMs prognostic model for risk stratification of the AML patients.The predictive value of the 9-CSMs risk score was further validated at the transcriptome and proteome levels.Multivariable Cox regression analysis showed that the risk score was an independent prognostic factor for the AML patients.The AML patients with high 9-CSMs risk scores had a shorter overall and event-free survival time than those with low scores.Notably,single-cell RNA-sequencing analysis indicated that patients with high 9-CSMs risk scores exhibited chemotherapy resistance.Furthermore,PI3K inhibitors were identified as potential treatments for these high-risk patients.In conclusion,we constructed a 9-CSMs prognostic model that served as an independent prognostic factor for the survival of AML patients and held the potential for guiding drug therapy. 展开更多
关键词 acute myeloid leukemia cell surface markers PROGNOSIS drug sensitivity multi-model analysis
暂未订购
Density Clustering Algorithm Based on KD-Tree and Voting Rules 被引量:1
11
作者 Hui Du Zhiyuan Hu +1 位作者 Depeng Lu Jingrui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期3239-3259,共21页
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional... Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy. 展开更多
关键词 Density peaks clustering KD-TREE K-nearest neighbors voting rules
在线阅读 下载PDF
A Bayesian multi-model inference methodology for imprecise momentindependent global sensitivity analysis of rock structures
12
作者 Akshay Kumar Gaurav Tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期840-859,共20页
Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating du... Traditional global sensitivity analysis(GSA)neglects the epistemic uncertainties associated with the probabilistic characteristics(i.e.type of distribution type and its parameters)of input rock properties emanating due to the small size of datasets while mapping the relative importance of properties to the model response.This paper proposes an augmented Bayesian multi-model inference(BMMI)coupled with GSA methodology(BMMI-GSA)to address this issue by estimating the imprecision in the momentindependent sensitivity indices of rock structures arising from the small size of input data.The methodology employs BMMI to quantify the epistemic uncertainties associated with model type and parameters of input properties.The estimated uncertainties are propagated in estimating imprecision in moment-independent Borgonovo’s indices by employing a reweighting approach on candidate probabilistic models.The proposed methodology is showcased for a rock slope prone to stress-controlled failure in the Himalayan region of India.The proposed methodology was superior to the conventional GSA(neglects all epistemic uncertainties)and Bayesian coupled GSA(B-GSA)(neglects model uncertainty)due to its capability to incorporate the uncertainties in both model type and parameters of properties.Imprecise Borgonovo’s indices estimated via proposed methodology provide the confidence intervals of the sensitivity indices instead of their fixed-point estimates,which makes the user more informed in the data collection efforts.Analyses performed with the varying sample sizes suggested that the uncertainties in sensitivity indices reduce significantly with the increasing sample sizes.The accurate importance ranking of properties was only possible via samples of large sizes.Further,the impact of the prior knowledge in terms of prior ranges and distributions was significant;hence,any related assumption should be made carefully. 展开更多
关键词 Bayesian inference multi-model inference Statistical uncertainty Global sensitivity analysis(GSA) Borgonovo’s indices Limited data
在线阅读 下载PDF
Deciphering Car Crash Dynamics in Greater Melbourne:a Multi-Model Machine Learning and Geospatial Analysis
13
作者 Christopher JOHNSON ZHOU Heng +1 位作者 Richard TAY SUN Qian(Chayn) 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第4期36-55,共20页
In the continually evolving landscape of data-driven methodologies addressing car crash patterns,a holistic analysis remains critical to decode the complex nuances of this phenomenon.This study bridges this knowledge ... In the continually evolving landscape of data-driven methodologies addressing car crash patterns,a holistic analysis remains critical to decode the complex nuances of this phenomenon.This study bridges this knowledge gap with a robust examination of car crash occurrence dynamics and the influencing variables in the Greater Melbourne area,Australia.We employed a comprehensive multi-model machine learning and geospatial analytics approach,unveiling the complicated interactions intrinsic to vehicular incidents.By harnessing Random Forest with SHAP(Shapley Additive Explanations),GLR(Generalized Linear Regression),and GWR(Geographically Weighted Regression),our research not only highlighted pivotal contributing elements but also enriched our findings by capturing often overlooked complexities.Using the Random Forest model,essential factors were emphasized,and with the aid of SHAP,we accessed the interaction of these factors.To complement our methodology,we incorporated hexagonalized geographic units,refining the granularity of crash density evaluations.In our multi-model study of car crash dynamics in Greater Melbourne,road geometry emerged as a key factor,with intersections showing a significant positive correlation with crashes.The average land surface temperature had variable significance across scales.Socio-economically,regions with a higher proportion of childless populations were identified as more prone to accidents.Public transit usage displayed a strong positive association with crashes,especially in densely populated areas.The convergence of insights from both Generalized Linear Regression and Random Forest’s SHAP values offered a comprehensive understanding of underlying patterns,pinpointing high-risk zones and influential determinants.These findings offer pivotal insights for targeted safety interventions in Greater Melbourne,Australia. 展开更多
关键词 car crash dynamics hexagonalization multi-model machine learning spatial planning intervention
在线阅读 下载PDF
股东失权的法律后果解释论 被引量:2
14
作者 刘凯湘 韩雪 《经贸法律评论》 2025年第1期87-104,共18页
新《公司法》尽管创设了股东出资义务的催缴与通知失权制度,但对于失权的法律后果并未予以明确。对于瑕疵出资股东,失权通知发出后即丧失未出资部分的股权,但丧失的股权主要是指股权中的财产性权利,股权中的人身性权利并不完全丧失,而... 新《公司法》尽管创设了股东出资义务的催缴与通知失权制度,但对于失权的法律后果并未予以明确。对于瑕疵出资股东,失权通知发出后即丧失未出资部分的股权,但丧失的股权主要是指股权中的财产性权利,股权中的人身性权利并不完全丧失,而只是丧失其中与财产性权利对应的、有牵连关系的权利,主要是表决权。股东认缴但未实际缴纳出资的股权应按照一定比例计算表决权。股权被没收后不再享有表决权。股东失权后仍须向债权人承担补充赔偿责任,对外责任履行后其有权选择申请复权,或者形成债权债务关系,此须视股权处理情况而定。公司没收股权后,应优先考虑转让股权。若选择减资注销股权,则应降低失权减资决议的表决通过比例。对于其他股东,失权通知发出之日即为确定其范围的基准日。失权股东之前手股东责任应先于其他股东责任,若其他股东无法承担责任的,应由除其之外的其他股东进一步按照出资比例分担。 展开更多
关键词 催缴出资 股东失权 瑕疵股权转让 表决权限制 债权人利益
在线阅读 下载PDF
高温环境中不同运动强度下可穿戴热电设备主客观反应实验设计
15
作者 杨华 王万昌 +1 位作者 杜聪 赵玉龙 《大学物理实验》 2025年第4期33-38,共6页
人体在高温环境中运动时会产生不同程度的热应激,高温环境对人体的生理和心理都会产生一定的影响,不同运动强度下人体的生理参数和主观参数均会发生变化。可穿戴热电设备利用人体余热产生电能,人体的皮肤温度会对设备的热电效率产生影... 人体在高温环境中运动时会产生不同程度的热应激,高温环境对人体的生理和心理都会产生一定的影响,不同运动强度下人体的生理参数和主观参数均会发生变化。可穿戴热电设备利用人体余热产生电能,人体的皮肤温度会对设备的热电效率产生影响。本文对高温环境中人体在不同运动强度下的主客观反应进行了实验设计,根据实验数据,分析了人体在高温环境下主客观反应的变化,并且分析了不同环境温度和运动强度对于可穿戴热电设备的热电效率的影响。本实验设计有助于提高学生对高温环境下人体主客观参数的变化的认知,可以提高学生对专业课程的认知和教学成效,并且可以提高学生的科学素养。 展开更多
关键词 高温环境 皮肤温度 热电效率 热感觉投票 感知劳累等级投票
在线阅读 下载PDF
面向电子投票的SM2门限环签名方案
16
作者 张应辉 封舒钰 +1 位作者 曹进 郑晓坤 《南京邮电大学学报(自然科学版)》 北大核心 2025年第3期67-76,共10页
电子投票因其高效、便捷的特性被广泛应用,如何保证投票结果的真实性,保护投票者的身份隐私以及提高投票系统的实用性成为设计电子投票系统的关键。对此,提出了一个面向电子投票的SM2门限环签名方案,利用门限环签名技术,通过让一组用户... 电子投票因其高效、便捷的特性被广泛应用,如何保证投票结果的真实性,保护投票者的身份隐私以及提高投票系统的实用性成为设计电子投票系统的关键。对此,提出了一个面向电子投票的SM2门限环签名方案,利用门限环签名技术,通过让一组用户中部分成员共同生成签名,保证投票结果真实有效,并且实现对签名者身份的隐私保护。采用SM2数字签名算法,在确保核心密码算法自主可控的同时提升了方案的整体效率。安全性分析表明,该方案满足匿名性和不可伪造性。效率分析表明,与现有方案相比,该方案效率优势明显。利用该方案设计的电子投票协议在保证安全性的同时具有高效性和实用性。 展开更多
关键词 门限环签名 SM2签名算法 不可伪造性 电子投票
在线阅读 下载PDF
分布式拟态裁决模型与架构设计
17
作者 余新胜 罗论涵 +3 位作者 张帆 张波 朱丹江 解维 《浙江大学学报(工学版)》 北大核心 2025年第10期2195-2204,共10页
单裁决器拟态防御架构根据执行体数量预设裁决算法,导致执行体数量无法弹性伸缩,为此提出分布式拟态裁决模型,将执行体值裁决转变为多层级联逻辑运算的拓扑结构规划问题.所提模型支持自定义数量的执行体与故障容许度,动态调整逻辑运算... 单裁决器拟态防御架构根据执行体数量预设裁决算法,导致执行体数量无法弹性伸缩,为此提出分布式拟态裁决模型,将执行体值裁决转变为多层级联逻辑运算的拓扑结构规划问题.所提模型支持自定义数量的执行体与故障容许度,动态调整逻辑运算级联拓扑,解耦执行体数量与裁决算法的强一致性关系,移除根据执行体数量预设裁决算法的前提条件.设计针对高安全、高鲁棒系统的分布式拟态裁决架构,定量分析执行体数量、容许度与级联逻辑运算迭代层数的关系.在仿真实验中,对比单裁决器拟态裁决架构、经典三模冗余投票模型、分布式拟态裁决架构的裁决能力与裁决效率.验证结果表明,分布式拟态裁决架构的裁决效率高,具有灵活的扩展性. 展开更多
关键词 拟态防御 单裁决器 分布式拟态裁决 三模冗余投票模型 级联拓扑 故障容许度
在线阅读 下载PDF
一种基于逐像素级投票的快速多聚焦图像融合方法
18
作者 罗回彬 翟鹤翔 赵伟康 《激光杂志》 北大核心 2025年第2期124-130,共7页
探索并构建了一种基于逐像素投票的快速图像融合方法。首先,通过在不同滑动窗口步长下进行相关的可视化和定量分析实验,从中确认了使用像素步长为2的滑动窗口的融合图像性能非常接近于使用像素步长为1的滑动窗口的性能。因此,在新的快... 探索并构建了一种基于逐像素投票的快速图像融合方法。首先,通过在不同滑动窗口步长下进行相关的可视化和定量分析实验,从中确认了使用像素步长为2的滑动窗口的融合图像性能非常接近于使用像素步长为1的滑动窗口的性能。因此,在新的快速图像融合方法中采用了像素步长为2的滑动窗口,以降低总体融合计算时间。其次,采用减小源图像分辨率的方法进一步降低快速融合算法的计算复杂度。实验结果表明,在不降低融合效果的情况下,选择合适的缩放比例可以有效提高融合算法的运行速度。此外,还对由摄影设备抖动引起的图像位移数据集进行了相关实验。提出的快速融合算法具有很强的鲁棒性,并且能够有效地融合具有轻微抖动的多聚焦源图像。 展开更多
关键词 多聚焦图像融合 滑窗 逐像素投票
原文传递
庭外重组协议效力延伸的适用与排斥
19
作者 马更新 蒋鹏辉 《南京师大学报(社会科学版)》 北大核心 2025年第4期88-98,共11页
《九民纪要》第115条通过庭外重组协议效力延伸机制初步构建了庭外重组与庭内重整制度衔接的逻辑体系,契合困境企业综合性化解债务危机的现实需求。在适用庭外重组协议效力延伸时,应区分权利人对庭外重组协议不同意见的表达,类型化适用... 《九民纪要》第115条通过庭外重组协议效力延伸机制初步构建了庭外重组与庭内重整制度衔接的逻辑体系,契合困境企业综合性化解债务危机的现实需求。在适用庭外重组协议效力延伸时,应区分权利人对庭外重组协议不同意见的表达,类型化适用禁反言规则。在排斥适用庭外重组协议的效力延伸时,应宽泛释明权利人“受到实质性的不利影响”标准,完善庭外重组的信息披露制度,明确“实质性相似”的表决分组标准,限制破产债权转让后受让方的表决权数量以规范表决程序的执行。基于庭外重组与破产和解的相通之处,应准许庭外重组协议效力扩张延伸至破产和解程序。 展开更多
关键词 庭外重组协议 效力延伸 禁反言 信息披露 表决程序
在线阅读 下载PDF
上一页 1 2 139 下一页 到第
使用帮助 返回顶部