期刊文献+
共找到2,794篇文章
< 1 2 140 >
每页显示 20 50 100
基于机器学习Voting集成算法的慢性咳嗽中医证候诊断模型构建 被引量:1
1
作者 白逸晨 秦苏杨 +6 位作者 周崇云 史利卿 季坤 张楚楚 李盼飞 崔唐明 李海燕 《中医杂志》 北大核心 2025年第11期1119-1127,共9页
目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>... 目的探索慢性咳嗽中医证候诊断机器学习模型的构建及采用Voting集成算法进行优化的方法。方法回顾性收集北京中医药大学东方医院呼吸科921例慢性咳嗽患者的病例资料,通过标准化处理提取84项临床特征,进行中医证候类型判定。筛选例数>50的证候类型所属病例数据形成慢性咳嗽中医证候诊断专病数据集。采用合成少数类过采样技术(SMOTE)平衡数据后,构建Logistic回归(LR)、决策树(DT)、多层感知机(MLP)和引导聚集(Bagging)4种基础模型,通过硬投票方式融合为Voting集成算法模型,并运用准确率、召回率、精确率、F1分数、受试者工作特征(ROC)曲线、ROC曲线下面积(AUC)及混淆矩阵评价模型性能。结果921例慢性咳嗽患者例数>50的证型为湿热郁肺证(294例)、风邪伏肺证(103例)、寒饮伏肺证(102例)、痰热郁肺证(64例)、肺阳亏虚证(54例)、痰湿阻肺证(53例)6种证候类型,共计670例,故为专病数据集。6种证候类型的患者高频症状可见咳嗽、咳痰、异味诱咳、咽痒、咽痒则咳、冷风诱咳等。构建的4种基础模型中,MLP模型的中医证候诊断效能最佳(测试集中准确率0.9104,AUC 0.9828);与4种基础模型相比,Voting集成算法模型性能表现最优,在训练集和测试中准确率分别为0.9289和0.9253,过拟合差异为0.0036,测试集中AUC值为0.9836,较所有基础模型的准确率和AUC均有所改善,且对湿热郁肺证(AUC 0.9984)和风邪伏肺证(AUC 0.9970)诊断效果更优。结论Voting集成算法有效整合多种机器学习优势,集成后的慢性咳嗽中医证候诊断模型效能得到了进一步优化,具有较高的准确性和更强的泛化能力。 展开更多
关键词 慢性咳嗽 机器学习 证候 诊断模型 voting集成算法
原文传递
基于Voting集成算法的中药抗炎预测模型的构建
2
作者 乔塬淏 谢虹亭 +5 位作者 胡馨雨 安宸 刘泽豪 陈美池 薛鹏 朱世杰 《中草药》 北大核心 2025年第15期5529-5537,共9页
目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等... 目的以中药药性作为特征变量,构建基于Voting集成算法的中药抗炎作用预测模型,并通过可视化技术分析不同药性特征对于中药抗炎作用的影响。方法以《中药学》与SymMap数据库中1247味中药为研究对象,经过初筛和复筛后建立包含性味归经等特征的规范化数据库。基于决策树、支持向量机、轻量级梯度提升机等6种基础模型构建Voting集成模型,并以七折交叉验证和基于树结构的贝叶斯优化算法超参数优化提升模型性能。利用SHAP(SHapley Additive ex Planations)解释器可视化关键药性特征。结果经筛选后,共纳入522味抗炎中药构建数据库。Voting集成模型综合性能最优,F1分数为0.797,AUC值为0.77,较单一模型平均提升7.4%。SHAP分析表明使中药发挥抗炎作用的重要特征分别是“脾经”“甘味”“补益”等,使中药不具有抗炎作用的重要特征为“性温或平”和“毒性”。结论首次通过集成算法构建具有良好性能的中药抗炎作用预测模型,为中医药与机器学习结合的研究模式提供了新思路。 展开更多
关键词 voting集成算法 中药 抗炎 机器学习 药性 四气五味
原文传递
An Overlap Sharding Blockchain:Reputation Voting Enabling Security and Efficiency for Dynamic AP Management in 6G UCAN 被引量:1
3
作者 Wang Jupen Hu Bo +2 位作者 Chen Shanzhi Zhang Yiting Wang Yilei 《China Communications》 2025年第7期208-219,共12页
Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a... Blockchain-based user-centric access network(UCAN)fails in dynamic access point(AP)management,as it lacks an incentive mechanism to promote virtuous behavior.Furthermore,the low throughput of the blockchain has been a bottleneck to the widespread adoption of UCAN in 6G.In this paper,we propose Overlap Shard,a blockchain framework based on a novel reputation voting(RV)scheme,to dynamically manage the APs in UCAN.AP nodes in UCAN are distributed across multiple shards based on the RV scheme.That is,nodes with good reputation(virtuous behavior)are likely to be selected in the overlap shard.The RV mechanism ensures the security of UCAN because most APs adopt virtuous behaviors.Furthermore,to improve the efficiency of the Overlap Shard,we reduce cross-shard transactions by introducing core nodes.Specifically,a few nodes are overlapped in different shards,which can directly process the transactions in two shards instead of crossshard transactions.This greatly increases the speed of transactions between shards and thus the throughput of the overlap shard.The experiments show that the throughput of the overlap shard is about 2.5 times that of the non-sharded blockchain. 展开更多
关键词 blockchain reputation voting scheme sharding 6G
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
4
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone Security Weighted Ensemble voting Unmanned Vehicles Security Strategies
在线阅读 下载PDF
Three-Dimensional Model Classification Based on VIT-GE and Voting Mechanism
5
作者 Fang Yuan Xueyao Gao Chunxiang Zhang 《Computers, Materials & Continua》 2025年第12期5037-5055,共19页
3D model classification has emerged as a significant research focus in computer vision.However,traditional convolutional neural networks(CNNs)often struggle to capture global dependencies across both height and width ... 3D model classification has emerged as a significant research focus in computer vision.However,traditional convolutional neural networks(CNNs)often struggle to capture global dependencies across both height and width dimensions simultaneously,leading to limited feature representation capabilities when handling complex visual tasks.To address this challenge,we propose a novel 3D model classification network named ViT-GE(Vision Transformer with Global and Efficient Attention),which integrates Global Grouped Coordinate Attention(GGCA)and Efficient Channel Attention(ECA)mechanisms.Specifically,the Vision Transformer(ViT)is employed to extract comprehensive global features from multi-view inputs using its self-attention mechanism,effectively capturing 3D shape characteristics.To further enhance spatial feature modeling,the GGCA module introduces a grouping strategy and global context interactions.Concurrently,the ECA module strengthens inter-channel information flow,enabling the network to adaptively emphasize key features and improve feature fusion.Finally,a voting mechanism is adopted to enhance classification accuracy,robustness,and stability.Experimental results on the ModelNet10 dataset demonstrate that our method achieves a classification accuracy of 93.50%,validating its effectiveness and superior performance. 展开更多
关键词 3D model voting algorithm visual transformer design space
在线阅读 下载PDF
A dual-approach to genomic predictions:leveraging convolutional networks and voting classifiers
6
作者 Raghad K.Mohammed Azmi Tawfeq Hussein Alrawi Ali Jbaeer Dawood 《Biomedical Engineering Communications》 2025年第1期3-11,共9页
Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the ident... Background:In the field of genetic diagnostics,DNA sequencing is an important tool because the depth and complexity of this field have major implications in light of the genetic architectures of diseases and the identification of risk factors associated with genetic disorders.Methods:Our study introduces a novel two-tiered analytical framework to raise the precision and reliability of genetic data interpretation.It is initiated by extracting and analyzing salient features from DNA sequences through a CNN-based feature analysis,taking advantage of the power inherent in Convolutional neural networks(CNNs)to attain complex patterns and minute mutations in genetic data.This study embraces an elite collection of machine learning classifiers interweaved through a stern voting mechanism,which synergistically joins the predictions made from multiple classifiers to generate comprehensive and well-balanced interpretations of the genetic data.Results:This state-of-the-art method was further tested by carrying out an empirical analysis on a variants'dataset of DNA sequences taken from patients affected by breast cancer,juxtaposed with a control group composed of healthy people.Thus,the integration of CNNs with a voting-based ensemble of classifiers returned outstanding outcomes,with performance metrics accuracy,precision,recall,and F1-scorereaching the outstanding rate of 0.88,outperforming previous models.Conclusions:This dual accomplishment underlines the transformative potential that integrating deep learning techniques with ensemble machine learning might provide in real added value for further genetic diagnostics and prognostics.These results from this study set a new benchmark in the accuracy of disease diagnosis through DNA sequencing and promise future studies on improved personalized medicine and healthcare approaches with precise genetic information. 展开更多
关键词 CNN DNA sequencing ensemble machine learning genetic disease voting classifier
在线阅读 下载PDF
Optimized Deep Feature Learning with Hybrid Ensemble Soft Voting for Early Breast Cancer Histopathological Image Classification
7
作者 Roseline Oluwaseun Ogundokun Pius Adewale Owolawi Chunling Tu 《Computers, Materials & Continua》 2025年第9期4869-4885,共17页
Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine lea... Breast cancer is among the leading causes of cancer mortality globally,and its diagnosis through histopathological image analysis is often prone to inter-observer variability and misclassification.Existing machine learning(ML)methods struggle with intra-class heterogeneity and inter-class similarity,necessitating more robust classification models.This study presents an ML classifier ensemble hybrid model for deep feature extraction with deep learning(DL)and Bat Swarm Optimization(BSO)hyperparameter optimization to improve breast cancer histopathology(BCH)image classification.A dataset of 804 Hematoxylin and Eosin(H&E)stained images classified as Benign,in situ,Invasive,and Normal categories(ICIAR2018_BACH_Challenge)has been utilized.ResNet50 was utilized for feature extraction,while Support Vector Machines(SVM),Random Forests(RF),XGBoosts(XGB),Decision Trees(DT),and AdaBoosts(ADB)were utilized for classification.BSO was utilized for hyperparameter optimization in a soft voting ensemble approach.Accuracy,precision,recall,specificity,F1-score,Receiver Operating Characteristic(ROC),and Precision-Recall(PR)were utilized for model performance metrics.The model using an ensemble outperformed individual classifiers in terms of having greater accuracy(~90.0%),precision(~86.4%),recall(~86.3%),and specificity(~96.6%).The robustness of the model was verified by both ROC and PR curves,which showed AUC values of 1.00,0.99,and 0.98 for Benign,Invasive,and in situ instances,respectively.This ensemble model delivers a strong and clinically valid methodology for breast cancer classification that enhances precision and minimizes diagnostic errors.Future work should focus on explainable AI,multi-modal fusion,few-shot learning,and edge computing for real-world deployment. 展开更多
关键词 Breast cancer classification ensemble learning deep learning bat swarm optimization HISTOPATHOLOGY soft voting
在线阅读 下载PDF
Comparison of the performance of gradient boost,linear regression,decision tree,and voting algorithms to separate geochemical anomalies areas in the fractal environment
8
作者 Mirmahdi Seyedrahimi-Niaraq Hossein Mahdiyanfar Mohammad hossein Olyaee 《Artificial Intelligence in Geosciences》 2025年第2期290-305,共16页
In this investigation,the Gradient Boosting(GB),Linear Regression(LR),Decision Tree(DT),and Voting algo-rithms were applied to predict the distribution pattern of Au geochemical data.Trace and indicator elements,inclu... In this investigation,the Gradient Boosting(GB),Linear Regression(LR),Decision Tree(DT),and Voting algo-rithms were applied to predict the distribution pattern of Au geochemical data.Trace and indicator elements,including Mo,Cu,Pb,Zn,Ag,Ni,Co,Mn,Fe,and As,were used with these machine learning algorithms(MLAs)to predict Au concentration values in the Doostbigloo porphyry Cu-Au-Mo mineralization area.The performance of the models was evaluated using the Mean Absolute Percentage Error(MAPE)and Root Mean Square Error(RMSE)metrics.The proposed ensemble Voting algorithm outperformed the other models,yielding more ac-curate predictions according to both metrics.The predicted data from the GB,LR,DT,and Voting MLAs were modeled using the Concentration-Area fractal method,and Au geochemical anomalies were mapped.To compare and validate the results,factors such as the location of the mineral deposits,their surface extent,and mineralization trend were considered.The results indicate that integrating hybrid MLAs with fractal modeling signifi-cantly improves geochemical prospectivity mapping.Among the four models,three(DT,GB,Voting)accurately identified both mineral deposits.The LR model,however,only identified Deposit I(central),and its mineralization trend diverged from the field data.The GB and Voting models produced similar results,with their final maps derived from fractal modeling showing the same anomalous areas.The anomaly boundaries identified by these two models are consistent with the two known reserves in the region.The results and plots related to prediction indicators and error rates for these two models also show high similarity,with lower error rates than the other models.Notably,the Voting model demonstrated superior performance in accurately delineating mineral deposit locations and identifying realistic mineralization trends while minimizing false anomalies. 展开更多
关键词 Gradient boost Linear regression Decision tree voting algorithm C-A fractal modeling Geochemical mapping
在线阅读 下载PDF
Construction of multi-model ensemble prediction for ENSO based on neural network
9
作者 Yuan Ou Ting Liu Tao Lian 《Acta Oceanologica Sinica》 2025年第8期10-19,共10页
In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceana... In this study,we conducted an experiment to construct multi-model ensemble(MME)predictions for the El Niño-Southern Oscillation(ENSO)using a neural network,based on hindcast data released from five coupled oceanatmosphere models,which exhibit varying levels of complexity.This nonlinear approach demonstrated extraordinary superiority and effectiveness in constructing ENSO MME.Subsequently,we employed the leave-one-out crossvalidation and the moving base methods to further validate the robustness of the neural network model in the formulation of ENSO MME.In conclusion,the neural network algorithm outperforms the conventional approach of assigning a uniform weight to all models.This is evidenced by an enhancement in correlation coefficients and reduction in prediction errors,which have the potential to provide a more accurate ENSO forecast. 展开更多
关键词 El Niño-Southern Oscillation(ENSO) multi-model ensemble mean neural network
在线阅读 下载PDF
3RVAV:A Three-Round Voting and Proof-of-Stake Consensus Protocol with Provable Byzantine Fault Tolerance
10
作者 Abeer S.Al-Humaimeedy 《Computers, Materials & Continua》 2025年第12期5207-5236,共30页
This paper presents 3RVAV(Three-Round Voting with Advanced Validation),a novel Byzantine Fault Tolerant consensus protocol combining Proof-of-Stake with a multi-phase voting mechanism.The protocol introduces three lay... This paper presents 3RVAV(Three-Round Voting with Advanced Validation),a novel Byzantine Fault Tolerant consensus protocol combining Proof-of-Stake with a multi-phase voting mechanism.The protocol introduces three layers of randomized committee voting with distinct participant roles(Validators,Delegators,and Users),achieving(4/5)-threshold approval per round through a verifiable random function(VRF)-based selection process.Our security analysis demonstrates 3RVAV provides 1−(1−s/n)^(3k) resistance to Sybil attacks with n participants and stake s,while maintaining O(kn log n)communication complexity.Experimental simulations show 3247 TPS throughput with 4-s finality,representing a 5.8×improvement over Algorand’s committee-based approach.The proposed protocol achieves approximately 4.2-s finality,demonstrating low latency while maintaining strong consistency and resilience.The protocol introduces a novel punishment matrix incorporating both stake slashing and probabilistic blacklisting,proving a Nash equilibrium for honest participation under rational actor assumptions. 展开更多
关键词 Byzantine fault tolerant proof-of-stake verifiable random function Sybil attack resistance Nash equilibrium committee voting
在线阅读 下载PDF
Ingel’s Theory on International Fairness Based on Simplified Voting System of UNSC
11
作者 Yinge Li 《Sociology Study》 2025年第4期188-203,共16页
According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting th... According to the Charter of the United Nations,the United Nations Security Council adopts a“collective security system”authorized voting system,which has prominent drawbacks such as difficulty in fully reflecting the will of all Member States.Combining interdisciplinary,qualitative and quantitative research methods,in response to the dilemma of Security Council voting reform,this article suggests retaining the Security Council voting system and recommending a simplified model of“basic and weighted half”for voting allocation.This model not only inherits the authorized voting system of the collective security system,but also follows the allocation system of sovereignty equality in the Charter.It can also achieve the“draw on the advantages and avoid disadvantages”of Member States towards international development,promote the transformation of“absolute equality”of overall consistency into“real fairness”relative to individual contributions,and further promote the development of international law in the United Nations voting system. 展开更多
关键词 United Nations Security Council authorized voting model and formula Security Council reform international law research
在线阅读 下载PDF
基于Tensor Voting的蚁蛉翅脉修补 被引量:9
12
作者 左西年 刘来福 +1 位作者 王心丽 沈佐锐 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期135-138,共4页
针对蚁蛉模式识别中蚁蛉翅脉断裂问题,利用Tensor Voting技术修补其数字照片中断裂的翅脉;展示将其应用于蚁蛉模式识别前期处理,以获取主要翅脉尽量完整信息的算法;数值实验中采用3种蚁蛉翅的图像作为测试,收到了很好的结果.
关键词 蚁蛉 模式识别 TENSOR voting 翅脉修补
在线阅读 下载PDF
应用Voting Machine构建研究型、互动型的双语物理课堂的研究与实践 被引量:2
13
作者 张勇 恽瑛 +1 位作者 朱明 周雨青 《大学物理》 北大核心 2008年第2期54-57,共4页
高等教育"质量工程"的实施为高等学校本科教学提出了更新、更高的要求和挑战.本文报道了应用Voting Machine这一具有强大的互动和统计功能的教学设备在双语物理课堂上开展研究型、互动型教学的实践和研究成果.
关键词 voting MACHINE 双语物理 课堂教学模式
在线阅读 下载PDF
BFV-Blockchainvoting:支持BFV全同态加密的区块链电子投票系统 被引量:7
14
作者 杨亚涛 刘德莉 +2 位作者 刘培鹤 曾萍 肖嵩 《通信学报》 EI CSCD 北大核心 2022年第9期100-111,共12页
当前的电子投票系统大多依赖于中心服务器和可信第三方,这种系统架构增加了投票的安全隐患,甚至使投票可能失败。为了解决这一问题,将区块链技术应用于电子投票系统,使区块链代替可信第三方,提出了一种支持BFV全同态加密的区块链电子投... 当前的电子投票系统大多依赖于中心服务器和可信第三方,这种系统架构增加了投票的安全隐患,甚至使投票可能失败。为了解决这一问题,将区块链技术应用于电子投票系统,使区块链代替可信第三方,提出了一种支持BFV全同态加密的区块链电子投票系统BFV-Blockchainvoting。首先,用一个公开透明的公告板记录选票信息,同时设计了智能合约来实现验证、自计票功能;其次,为进一步提高投票过程的安全可靠性,使用SM2签名算法对投票者的注册信息进行签名处理,再选择能够互相监督的双方共同监管选票,并使用BFV同态加密算法来隐藏计票数据。经过测试与分析,所提系统单张选票的计票时间平均为1.69ms。所提方案可以为投票过程中的不可操纵性、匿名性、可验证性、不可重用性、不可胁迫性和抗量子攻击等安全属性提供保障,适用于多种投票场合,并且可以满足大型投票场景下的高效率需求。 展开更多
关键词 电子投票 区块链 全同态加密 BFV同态加密 智能合约
在线阅读 下载PDF
多特征融合的Voting-SRM情感分类研究 被引量:10
15
作者 赵乐 麦范金 张兴旺 《小型微型计算机系统》 CSCD 北大核心 2019年第11期2269-2273,共5页
情感分类是自然语言处理领域的一个核心问题,其目的是判断评论文本的情感极性,并挖掘其蕴含的情感价值信息.为了提取评论文本中潜在的情感信息,提高分类精度,本文提出了多特征融合的Voting-SRM情感分类方法.结合词性特征,语法特征等,提... 情感分类是自然语言处理领域的一个核心问题,其目的是判断评论文本的情感极性,并挖掘其蕴含的情感价值信息.为了提取评论文本中潜在的情感信息,提高分类精度,本文提出了多特征融合的Voting-SRM情感分类方法.结合词性特征,语法特征等,提取名词,动词,形容词,副词等特征,然后运用软投票机制,结合随机梯度下降算法、随机森林、神经网络等算法,对已获取评论文本进行极性二分类.本文通过对比实验,验证了该方法的有效性. 展开更多
关键词 词性标注 二元语法 随机梯度下降 投票机制 情感分类
在线阅读 下载PDF
Collision free 4D path planning for multiple UAVs based on spatial refined voting mechanism and PSO approach 被引量:28
16
作者 Yang LIU Xuejun ZHANG +1 位作者 Yu ZHANG Xiangmin GUAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第6期1504-1519,共16页
In this paper, a four-dimensional coordinated path planning algorithm for multiple UAVs is proposed, in which time variable is taken into account for each UAV as well as collision free and obstacle avoidance. A Spatia... In this paper, a four-dimensional coordinated path planning algorithm for multiple UAVs is proposed, in which time variable is taken into account for each UAV as well as collision free and obstacle avoidance. A Spatial Refined Voting Mechanism(SRVM) is designed for standard Particle Swarm Optimization(PSO) to overcome the defects of local optimal and slow convergence.For each generation candidate particle positions are recorded and an adaptive cube is formed with own adaptive side length to indicate occupied regions. Then space voting begins and is sorted based on voting results, whose centers with bigger voting counts are seen as sub-optimal positions. The average of all particles of corresponding dimensions are calculated as the refined solutions. A time coordination method is developed by generating specified candidate paths for every UAV, making them arrive the same destination with the same time consumption. A spatial-temporal collision avoidance technique is introduced to make collision free. Distance to destination is constructed to improve the searching accuracy and velocity of particles. In addition, the objective function is redesigned by considering the obstacle and threat avoidance, Estimated Time of Arrival(ETA), separation maintenance and UAV self-constraints. Experimental results prove the effectiveness and efficiency of the algorithm. 展开更多
关键词 4D path planning Collision free Multiple UAVS OBSTACLE AVOIDANCE Particle SWARM optimization SPATIAL refined voting mechanism
原文传递
物理课堂教学评价的一种先进工具———Voting Machine评价系统介绍 被引量:1
17
作者 黄义平 李晓芬 鲁增贤 《物理教学探讨(中学教学教研版)》 2007年第1期53-56,共4页
本文介绍美国俄亥俄州立大学研制的Voting Machine教学评价系统,详细论述了该教学评价系统的组成和安装、师生使用方法以及系统的理论依据。
关键词 教学评价 voting MACHINE 安装 理论 应用
在线阅读 下载PDF
Dynamic weighted voting for multiple classifier fusion:a generalized rough set method 被引量:9
18
作者 Sun Liang Han Chongzhao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期487-494,共8页
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ... To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV). 展开更多
关键词 multiple classifier fusion dynamic weighted voting generalized rough set hyperspectral.
在线阅读 下载PDF
Statistical Downscaling for Multi-Model Ensemble Prediction of Summer Monsoon Rainfall in the Asia-Pacific Region Using Geopotential Height Field 被引量:42
19
作者 祝从文 Chung-Kyu PARK +1 位作者 Woo-Sung LEE Won-Tae YUN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期867-884,共18页
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in ni... The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, where the anomaly correlation coefficient (ACC) has been improved by 0.14, corresponding to the reduced RMSE of 10.4% in the conventional multi-model ensemble (MME) forecast. 展开更多
关键词 summer monsoon precipitation multi-model ensemble prediction statistical downscaling forecast
在线阅读 下载PDF
上一页 1 2 140 下一页 到第
使用帮助 返回顶部