A group optimal penetration strategy in complex attack and defense confrontation situation is proposed in this paper to solve the coordinated penetration decision-making problem of endo-atmospheric gliding simultaneou...A group optimal penetration strategy in complex attack and defense confrontation situation is proposed in this paper to solve the coordinated penetration decision-making problem of endo-atmospheric gliding simultaneous multi-missile penetration of interceptors.First,the problem of large search space of multi-missile coordinated penetration maneuvers is fully considered,and the flight corridor of multi-missile coordinated penetration is designed to constrain search space of multi-agent coordinated strategy,comprehensively considering path constraints and anticollision constraints of gliding multi-missile flight.Then,a multi-missile hierarchical coordinated decision-making mechanism based on confrontation situation is proposed,and the swarm penetration strategy is optimized with the goal of maximizing swarm penetration effectiveness.The upper layer plans the swarm penetration formation according to confrontation situation,and generates the swarm coordinated penetration trajectory based on Multi-Agent Deep Deterministic Policy Gradient(MADDPG)method.The lower layer interpolates and smooths penetration trajectory,and generates the penetration guidance command based on Soft Actor-Critic and Extended Proportional Guidance(SAC-EPG)method.Simulation results verify that the proposed multi-missile cooperative penetration method based on hierarchical reinforcement learning converges faster than the penetration method based on MADDPG,and can quickly learn multi-missile cooperative penetration skills.In addition,multi-missile coordination can give full play to the group's detection and maneuverability,and occupy favorable penetration time and space through coordinated ballistic maneuvers.Thus the success rate of group penetration can be improved.展开更多
A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the ...A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.展开更多
The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firep...The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.展开更多
The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A ...The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A computational model of coordinated attack parameters,a model of submarine maneuver,and a model of noise jammer were established.Compared to single helicopter' torpedo attack,the coordinated attack of two helicopters can effectively increase the hit probability of torpedo and achieve the higher target detecting probability under counterwork condition.展开更多
As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. Ther...As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.展开更多
With the proliferation of advanced communication technologies and the deepening interdependence between cyber and physical components,power distribution networks are subject to miscellaneous security risks induced by ...With the proliferation of advanced communication technologies and the deepening interdependence between cyber and physical components,power distribution networks are subject to miscellaneous security risks induced by malicious attackers.To address the issue,this paper proposes a security risk assessment method and a risk-oriented defense resource allocation strategy for cyber-physical distribution networks(CPDNs)against coordinated cyber attacks.First,an attack graph-based CPDN architecture is constructed,and representative cyber-attack paths are drawn considering the CPDN topology and the risk propagation process.The probability of a successful coordinated cyber attack and incurred security risks are quantitatively assessed based on the absorbing Markov chain model and National Institute of Standards and Technology(NIST)standard.Next,a risk-oriented defense resource allocation strategy is proposed for CPDNs in different attack scenarios.The tradeoff between security risk and limited resource budget is formulated as a multi-objective optimization(MOO)problem,which is solved by an efficient optimal Pareto solution generation approach.By employing a generational distance metric,the optimal solution is prioritized from the optimal Pareto set of the MOO and leveraged for subsequent atomic allocation of defense resources.Several case studies on a modified IEEE 123-node test feeder substantiate the efficacy of the proposed security risk assessment method and risk-oriented defense resource allocation strategy.展开更多
A coordinate system of the original image is established using a facial feature point localization technique. After the original image transformed into a new image with the standard coordinate system, a redundant wate...A coordinate system of the original image is established using a facial feature point localization technique. After the original image transformed into a new image with the standard coordinate system, a redundant watermark is adaptively embedded in the discrete wavelet transform(DWT) domain based on the statistical characteristics of the wavelet coefficient block. The coordinate system of watermarked image is reestablished as a calibration system. Regardless of the host image rotated, scaled, or translated(RST), all the geometric attacks are eliminated while the watermarked image is transformed into the standard coordinate system. The proposed watermark detection is a blind detection. Experimental results demonstrate the proposed scheme is robust against common and geometric image processing attacks, particularly its robustness against joint geometric attacks.展开更多
This paper proposes a tri-level defense planning model to defend a power system against a coor-dinated cyber-physical attack(CCPA).The defense plan considers not only the standalone physical attack or the cyber attack...This paper proposes a tri-level defense planning model to defend a power system against a coor-dinated cyber-physical attack(CCPA).The defense plan considers not only the standalone physical attack or the cyber attack,but also coordinated attacks.The defense strategy adopts coordinated generation and transmission expansion planning to defend against the attacks.In the process of modeling,the upper-level plan represents the perspective of the planner,aiming to minimize the critical load shedding of the planning system after the attack.The load resources available to planners are extended to flex-ible loads and critical loads.The middle-level plan is from the viewpoint of the attacker,and aims at generating an optimal CCPA scheme in the light of the planning strategy determined by the upper-level plan to maximize the load shedding caused by the attack.The optimal operational behavior of the operator is described by the lower-level plan,which minimizes the load shedding by defending against the CCPA.The tri-level model is analyzed by the column and constraint generation algorithm,which decomposes the defense model into a master problem and subproblem.Case studies on a modified IEEE RTS-79 system are performed to demonstrate the economic effi-ciency of the proposed model.展开更多
文摘A group optimal penetration strategy in complex attack and defense confrontation situation is proposed in this paper to solve the coordinated penetration decision-making problem of endo-atmospheric gliding simultaneous multi-missile penetration of interceptors.First,the problem of large search space of multi-missile coordinated penetration maneuvers is fully considered,and the flight corridor of multi-missile coordinated penetration is designed to constrain search space of multi-agent coordinated strategy,comprehensively considering path constraints and anticollision constraints of gliding multi-missile flight.Then,a multi-missile hierarchical coordinated decision-making mechanism based on confrontation situation is proposed,and the swarm penetration strategy is optimized with the goal of maximizing swarm penetration effectiveness.The upper layer plans the swarm penetration formation according to confrontation situation,and generates the swarm coordinated penetration trajectory based on Multi-Agent Deep Deterministic Policy Gradient(MADDPG)method.The lower layer interpolates and smooths penetration trajectory,and generates the penetration guidance command based on Soft Actor-Critic and Extended Proportional Guidance(SAC-EPG)method.Simulation results verify that the proposed multi-missile cooperative penetration method based on hierarchical reinforcement learning converges faster than the penetration method based on MADDPG,and can quickly learn multi-missile cooperative penetration skills.In addition,multi-missile coordination can give full play to the group's detection and maneuverability,and occupy favorable penetration time and space through coordinated ballistic maneuvers.Thus the success rate of group penetration can be improved.
文摘A definition of self-determined priority is used in airfight decision firstly. A scheme of grouping the whole fighters is introduced, and the principle of target assignment and fire control is designed. Based on the neutral network, the decision algorithm is derived and the whole coordinated decision system is simulated. Secondly an algorithm for missile-attacking area is described and its calculational result is obtained under initial conditions. Then the attacking of missile is realized by the proportion guidance. Finally, a multi-target attack system. The system includes airfight decision, estimation of missile attack area and calculation of missile attack procedure. A digital simulation demonstrates that the airfight decision algorithm is correct. The methods have important reference values for the study of fire control system of the fourth generation fighter.
基金supported by the National Natural Science Foundation of China (10377014)the Innovation Foundation of Northwestern Polytechnical university (2007KJ01027)
文摘The coordinated Bayesian optimization algorithm(CBOA) is proposed according to the characteristics of the function independence,conformity and supplementary between the electronic countermeasure(ECM) and the firepower attack systems.The selection criteria are combinations of probabilities of individual fitness and coordinated degree and can select choiceness individual to construct Bayesian network that manifest population evolution by producing the new chromosome.Thus the CBOA cannot only guarantee the effective pattern coordinated decision-making mechanism between the populations,but also maintain the population multiplicity,and enhance the algorithm performance.The simulation result confirms the algorithm validity.
文摘The organization of coordinated attack and the selection of aiming point which affect hit probability were analyzed for the countermeasures taken by the hostile submarines at two helicopters' coordinated attack.A computational model of coordinated attack parameters,a model of submarine maneuver,and a model of noise jammer were established.Compared to single helicopter' torpedo attack,the coordinated attack of two helicopters can effectively increase the hit probability of torpedo and achieve the higher target detecting probability under counterwork condition.
基金supported by the Ministry of Trade,Industry and Energy(MOTIE)under Training Industrial Security Specialist for High-Tech Industry(RS-2024-00415520)supervised by the Korea Institute for Advancement of Technology(KIAT)the Ministry of Science and ICT(MSIT)under the ICT Challenge and Advanced Network of HRD(ICAN)Program(No.IITP-2022-RS-2022-00156310)supervised by the Institute of Information&Communication Technology Planning&Evaluation(IITP).
文摘As the density of wireless networks increases globally, the vulnerability of overlapped dense wireless communications to interference by hidden nodes and denial-of-service (DoS) attacks is becoming more apparent. There exists a gap in research on the detection and response to attacks on Medium Access Control (MAC) mechanisms themselves, which would lead to service outages between nodes. Classifying exploitation and deceptive jamming attacks on control mechanisms is particularly challengingdue to their resemblance to normal heavy communication patterns. Accordingly, this paper proposes a machine learning-based selective attack mitigation model that detects DoS attacks on wireless networks by monitoring packet log data. Based on the type of detected attack, it implements effective corresponding mitigation techniques to restore performance to nodes whose availability has been compromised. Experimental results reveal that the accuracy of the proposed model is 14% higher than that of a baseline anomaly detection model. Further, the appropriate mitigation techniques selected by the proposed system based on the attack type improve the average throughput by more than 440% compared to the case without a response.
基金supported by the National Natural Science Foundation of China(No.52377086)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0063)。
文摘With the proliferation of advanced communication technologies and the deepening interdependence between cyber and physical components,power distribution networks are subject to miscellaneous security risks induced by malicious attackers.To address the issue,this paper proposes a security risk assessment method and a risk-oriented defense resource allocation strategy for cyber-physical distribution networks(CPDNs)against coordinated cyber attacks.First,an attack graph-based CPDN architecture is constructed,and representative cyber-attack paths are drawn considering the CPDN topology and the risk propagation process.The probability of a successful coordinated cyber attack and incurred security risks are quantitatively assessed based on the absorbing Markov chain model and National Institute of Standards and Technology(NIST)standard.Next,a risk-oriented defense resource allocation strategy is proposed for CPDNs in different attack scenarios.The tradeoff between security risk and limited resource budget is formulated as a multi-objective optimization(MOO)problem,which is solved by an efficient optimal Pareto solution generation approach.By employing a generational distance metric,the optimal solution is prioritized from the optimal Pareto set of the MOO and leveraged for subsequent atomic allocation of defense resources.Several case studies on a modified IEEE 123-node test feeder substantiate the efficacy of the proposed security risk assessment method and risk-oriented defense resource allocation strategy.
文摘A coordinate system of the original image is established using a facial feature point localization technique. After the original image transformed into a new image with the standard coordinate system, a redundant watermark is adaptively embedded in the discrete wavelet transform(DWT) domain based on the statistical characteristics of the wavelet coefficient block. The coordinate system of watermarked image is reestablished as a calibration system. Regardless of the host image rotated, scaled, or translated(RST), all the geometric attacks are eliminated while the watermarked image is transformed into the standard coordinate system. The proposed watermark detection is a blind detection. Experimental results demonstrate the proposed scheme is robust against common and geometric image processing attacks, particularly its robustness against joint geometric attacks.
基金supported by the National Natural Science Foundation of China(No.52022016).
文摘This paper proposes a tri-level defense planning model to defend a power system against a coor-dinated cyber-physical attack(CCPA).The defense plan considers not only the standalone physical attack or the cyber attack,but also coordinated attacks.The defense strategy adopts coordinated generation and transmission expansion planning to defend against the attacks.In the process of modeling,the upper-level plan represents the perspective of the planner,aiming to minimize the critical load shedding of the planning system after the attack.The load resources available to planners are extended to flex-ible loads and critical loads.The middle-level plan is from the viewpoint of the attacker,and aims at generating an optimal CCPA scheme in the light of the planning strategy determined by the upper-level plan to maximize the load shedding caused by the attack.The optimal operational behavior of the operator is described by the lower-level plan,which minimizes the load shedding by defending against the CCPA.The tri-level model is analyzed by the column and constraint generation algorithm,which decomposes the defense model into a master problem and subproblem.Case studies on a modified IEEE RTS-79 system are performed to demonstrate the economic effi-ciency of the proposed model.