期刊文献+

基于深度学习的多会话协同攻击加密流量检测技术研究 被引量:3

Encrypted Traffic Detection Technology for Multi-session Coordinated Attack Based on Deep Learning
在线阅读 下载PDF
导出
摘要 恶意加密攻击流量检测是当前网络安全领域的一项重要研究课题.攻击者利用多会话的加密流量实现多阶段协同攻击正在成为一种发展趋势.分析了目前主流恶意加密流量检测方法存在的问题,提出一种面向多会话协同攻击场景的恶意加密流量检测方法.该方法通过提取多会话特征数据并转换为图像,利用深度学习方法在图像识别领域的优势,将加密流量识别问题转换为图像识别问题,从而间接实现了恶意加密流量检测.基于实验数据的初步测试结果验证了该方法的有效性. Malicious encrypted traffic detection is currently an important research topic in the field of network security.Attacker used multi-session encrypted traffic to achieve multi-stage coordinated attacks,which is becoming a trend.This paper analyzes the existing problems of current mainstream malicious encrypted traffic detection methods,and proposes an malicious encrypted traffic detection method for multi-session coordinated attack scenarios.Based on the advantages of deep learning methods in the field of image recognition,this method extracts multi-session features and converts them into images,converting encrypted traffic identification problems into image recognition problems,thereby indirectly realizes malicious encrypted traffic detection.The preliminary test results on the experimental data have verified the effectiveness of the method.
作者 周成胜 孟楠 赵勋 邱情芳 Zhou Chengsheng;Meng Nan;Zhao Xun;Qiu Qingfang(Institute of Security,China Academy of Information and Communications Technology,Beijing 100191;China General Certification Center,Beijing 100010)
出处 《信息安全研究》 北大核心 2025年第1期66-73,共8页 Journal of Information Security Research
关键词 深度学习 加密流量 多会话 协同攻击 网络安全 deep learning encrypted traffic multi-session coordinated attack network security
  • 相关文献

参考文献1

二级参考文献7

共引文献1

同被引文献23

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部