期刊文献+
共找到138,063篇文章
< 1 2 250 >
每页显示 20 50 100
Designing electrode materials for aluminum-ion batteries towards fast diffusion and multi-electron reaction 被引量:1
1
作者 Lumin Zheng Haoyi Yang +1 位作者 Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期229-232,共4页
Since the electrochemical energy storage was invented, mobile has brought us a new world without wires for more electronic devices [1–4]. Aluminum ion batteries(AIBs) were born with the requirements of electrochemica... Since the electrochemical energy storage was invented, mobile has brought us a new world without wires for more electronic devices [1–4]. Aluminum ion batteries(AIBs) were born with the requirements of electrochemical energy storage towards high capacity, safe and low cost. 展开更多
关键词 Aluminum-ion batteries Theory research Electrode materials DYNAMICS multi-electron reaction
在线阅读 下载PDF
Multi-electron reaction concept for the universal battery design 被引量:1
2
作者 Feng Wu Haoyi Yang +1 位作者 Ying Bai Chuan Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期416-417,共2页
Electrochemical batteries define the contraption stores electricity in the direct form of chemical energy with high efficiency. If the energy conversion process can be reversed, namely the input and output of electric... Electrochemical batteries define the contraption stores electricity in the direct form of chemical energy with high efficiency. If the energy conversion process can be reversed, namely the input and output of electricity both being permitted, the batteries are termed rechargeable batteries or also secondary batteries accordingly [1]. These decades have witnessed the rapid development of batteries because of the demands for transportation of information and mass in the mobile area, and stationary storage for the implementation of renewable energy technologies. 展开更多
关键词 multi-electron reaction Electrode material Redox chemistry
在线阅读 下载PDF
Stable multi-electron reaction stimulated by W doping VS_(4)for enhancing magnesium storage performance
3
作者 Yuxin Tian Jiankang Chen +7 位作者 Guofeng Wang Bing Sun Alan Meng Lei Wang Guicun Li Jianfeng Huang Shiqi Ding Zhenjiang Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期89-98,I0004,共11页
Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high perfo... Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices. 展开更多
关键词 multi-electron reaction W doping Stable structure CATHODE Rechargeable magnesium batteries
在线阅读 下载PDF
Multi-electron reaction and fast Al ion diffusion of δ-MnO_(2) cathode materials in rechargeable aluminum batteries via first-principle calculations
4
作者 Lumin Zheng Ying Bai Chuan Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期248-254,共7页
Rechargeable aluminum batteries with multi-electron reaction have a high theoretical capacity for next generation of energy storage devices. However, the diffusion mechanism and intrinsic property of Al insertion into... Rechargeable aluminum batteries with multi-electron reaction have a high theoretical capacity for next generation of energy storage devices. However, the diffusion mechanism and intrinsic property of Al insertion into MnO_(2) are not clear. Hence, based on the first-principles calculations, key influencing factors of slow Al-ions diffusion are narrow pathways, unstable Al-O bonds and Mn^(3+) type polaron have been identified by investigating four types of δ-MnO_(2)(O3, O'3, P2 and T1). Although Al insert into δ-MnO_(2) leads to a decrease in the spacing of the Mn-Mn layer, P2 type MnO_(2) keeps the long(spacious pathways)and stable(2.007–2.030 A) Al-O bonds resulting in the lower energy barrier of Al diffusion of 0.56 e V. By eliminated the influence of Mn^(3+)(low concentration of Al insertion), the energy barrier of Al migration achieves 0.19 e V in P2 type, confirming the obviously effect of Mn^(3+) polaron. On the contrary, although the T1 type MnO_(2) has the sluggish of Al-ions diffusion, the larger interlayer spacing of Mn-Mn layer,causing by H_(2)O could assist Al-ions diffusion. Furthermore, it is worth to notice that the multilayer δ-MnO_(2) achieves multi-electron reaction of 3|e|. Considering the requirement of high energy density, the average voltage of P2(1.76 V) is not an obstacle for application as cathode in RABs. These discover suggest that layered MnO_(2) should keep more P2-type structure in the synthesis of materials and increase the interlayer spacing of Mn-Mn layer for providing technical support of RABs in large-scale energy storage. 展开更多
关键词 Rechargeable aluminum batteries δ-MnO_(2) First-principles calculations multi-electron reaction Diffusion mechanism
原文传递
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
5
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Advanced isoconversional kinetic analysis of lepidolite sulfation product decomposition reactions for selectively extracting lithium
6
作者 Yubo Liu Baozhong Ma +4 位作者 Jiahui Cheng Xiang Li Hui Yang Chengyan Wang Yongqiang Chen 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期217-227,共11页
The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.A... The sulfation and decomposition process has proven effective in selectively extracting lithium from lepidolite.It is essential to clarify the thermochemical behavior and kinetic parameters of decomposition reactions.Accordingly,comprehensive kinetic study by employing thermalgravimetric analysis at various heating rates was presented in this paper.Two main weight loss regions were observed during heating.The initial region corresponded to the dehydration of crystal water,whereas the subsequent region with overlapping peaks involved complex decomposition reactions.The overlapping peaks were separated into two individual reaction peaks and the activation energy of each peak was calculated using isoconversional kinetics methods.The activation energy of peak 1 exhibited a continual increase as the reaction conversion progressed,while that of peak 2 steadily decreased.The optimal kinetic models,identified as belonging to the random nucleation and subsequent growth category,provided valuable insights into the mechanism of the decomposition reactions.Furthermore,the adjustment factor was introduced to reconstruct the kinetic mechanism models,and the reconstructed models described the kinetic mechanism model more accurately for the decomposition reactions.This study enhanced the understanding of the thermochemical behavior and kinetic parameters of the lepidolite sulfation product decomposition reactions,further providing theoretical basis for promoting the selective extraction of lithium. 展开更多
关键词 LITHIUM LEPIDOLITE decomposition reactions KINETICS isoconversional analysis
在线阅读 下载PDF
Solar-Driven Redox Reactions with Metal Halide Perovskites Heterogeneous Structures
7
作者 Qing Guo Jin‑Dan Zhang +1 位作者 Jian Li Xiyuan Feng 《Nano-Micro Letters》 2026年第2期337-367,共31页
Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks... Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed. 展开更多
关键词 Metal halide perovskite HETEROJUNCTION Redox reaction Solar-to-chemical conversion
在线阅读 下载PDF
Fe-loaded S,N co-doped carbon catalyst for oxygen reduction reaction with enhanced electrocatalytic activity and durability
8
作者 Shengzhi He Chunwen Sun 《International Journal of Minerals,Metallurgy and Materials》 2026年第1期315-321,共7页
Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-... Heteroatom-doped carbon is considered a promising alternative to commercial Pt/C as an efficient catalyst for the oxygen reduction reaction(ORR).This study presents the synthesis of iron-loaded,sulfur and nitrogen co-doped carbon(Fe/SNC)via in situ incorporation of 2-aminothiazole molecules into zeolitic imidazolate framework-8(ZIF-8)through coordination between metal ions and organic ligands.Sulfur and nitrogen doping in carbon supports effectively modulates the electronic structure of the catalyst,increases the Brunauer-Emmett-Teller surface area,and exposes more Fe-N_(x)active centers.Fe-loaded,S and N co-doped carbon with Fe/S molar ratio of 1:10(Fe/SNC-10)exhibits a half-wave potential of 0.902 V vs.RHE.After 5000 cycles of cyclic voltammetry,its half-wave potential decreases by only 20 mV vs.RHE,indicating excellent stability.Due to sulfur s lower electronegativity,the electronic structure of the Fe-N_(x)active center is modulated.Additionally,the larger atomic radius of sulfur introduces defects into the carbon support.As a result,Fe/SNC-10 demonstrates superior ORR activity and stability in alkaline solution compared with Fe-loaded N-doped carbon(Fe/NC).Furthermore,the zinc-air battery assembled with the Fe/SNC-10 catalyst shows enhanced performance relative to those assembled with Fe/NC and Pt/C catalysts.This work offers a novel design strategy for advanced energy storage and conversion applications. 展开更多
关键词 zinc-air batteries oxygen reduction reaction iron-loaded nitrogen-doped carbon sulfur-doping
在线阅读 下载PDF
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
9
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
Multi-electron Reaction Materials for High-Energy-Density Secondary Batteries:Current Status and Prospective 被引量:3
10
作者 Xinran Wang Guoqiang Tan +2 位作者 Ying Bai Feng Wu Chuan Wu 《Electrochemical Energy Reviews》 SCIE EI 2021年第1期35-66,共32页
To address increasing energy supply challenges and allow for the effective utilization of renewable energy sources,transformational and reliable battery chemistry are critically needed to obtain higher energy densitie... To address increasing energy supply challenges and allow for the effective utilization of renewable energy sources,transformational and reliable battery chemistry are critically needed to obtain higher energy densities.Here,significant progress has been made in the past few decades in energetic battery systems based on the concept of multi-electron reactions to overcome existing barriers in conventional battery research and application.As a result,a systematic understanding of multi-electron chemistry is essential for the design of novel multi-electron reaction materials and the enhancement of corresponding battery performances.Based on this,this review will briefly present the advancements of multi-electron reaction materials from their evolutionary discovery from lightweight elements to the more recent multi-ion effect.In addition,this review will discuss representative multi-electron reaction chemistry and materials,including ferrates,metal borides,metal oxides,metal fluorides,lithium transition metal oxides,silicon,sulfur and oxygen.Furthermore,insertion-type,alloy-type and conversion-type multi-electron chemistry involving monovalent Li^(+) and Na^(+) cations,polyvalent Mg^(2+) and Al^(3+) cations beyond those of alkali metals as well as activated S^(2−) and O^(2−) anions are introduced in the enrichment and development of multi-electron reactions for electrochemical energy storage applications.Finally,this review will present the ongoing challenges and underpinning mechanisms limiting the performance of multi-electron reaction materials and corresponding battery systems. 展开更多
关键词 multi-electron reaction Multi-ion effect Lightweight element Secondary battery Energy density
在线阅读 下载PDF
Robust sodium storage enabled medium entropy Na_(3.5)V_(0.5)Mn_(0.5)Fe_(0.5)Ti_(0.5)(PO_(4))_(3) NASICON with multielectron reaction for sodium-ion battery
11
作者 Muhammad Tayyab Ahsan Zeeshan Ali +2 位作者 Jing-Jing Wang Wan-Ting Zhao Yang-Long Hou 《Rare Metals》 2025年第4期2328-2339,共12页
Sodium superionic conductors(NASICONs)have attracted enormous attention owing to their excellent ionic diffusion and structural stability.However,the high cost of vanadium,limited capacity due to fewer redox reactions... Sodium superionic conductors(NASICONs)have attracted enormous attention owing to their excellent ionic diffusion and structural stability.However,the high cost of vanadium,limited capacity due to fewer redox reactions,and low electronic conductivity restrict their practical application.Herein,we designed Na_(3.5)V_(0.5)Mn_(0.5)Fe_(0.5)Ti_(0.5)(PO_(4))3 (NVMFTP)medium entropy NASICON with multi-electron reactions as a fast sodium storage cathode for sodium-ion batteries(SIBs).The incorporation of Fe,Mn and Ti not only reduces the cost but also activates multi-redox reactions of V^(2+)/V^(3+),Ti^(3+)/Ti^(4+),Fe^(2+)/Fe^(3+),V^(3+)/V^(4+),Mn^(2+)/Mn^(3+),V^(4+)/V^(5+).Owing to distinctive structural design with medium entropy,the NVMFTP delivered 168 mAh·g^(−1) at 0.5C with a remarkable rate capability of 93.51 mAh·g^(−1) at 60C and steady long-term cycling performance till 5000 cycles.More importantly,NVMFTP takes only 11 min to achieve 80%SOC at 5C.The in-situ and ex-situ X-ray diffraction(XRD)further demonstrate reversible multi-electron reaction mechanisms of slow charging and fast charging.NVMFTP/HC full cell shows 110 mAh·g^(−1) capacity and 208 Wh·kg^(−1) energy density.This study will provide comprehensive insight into developing low-cost,cutting-edge materials for SIBs. 展开更多
关键词 Sodium-ion batteries Medium entropy Cathode materials multi-electron reactions NASICON materials
原文传递
Extraction of symmetry energy coefficient in heavy-ion reactions near the Fermi energies
12
作者 冷强钟 曲国峰 +8 位作者 黄宇 张鑫 段茜 陈婉君 林炜平 郑华 任培培 刘星泉 韩纪锋 《四川大学学报(自然科学版)》 北大核心 2025年第1期153-161,共9页
An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.Thi... An improved method is proposed for the extraction of the symmetry energy coefficient relative to the temperature,a_(sym)/T,in the heavy-ion reactions near the Fermi energy region,based on the modified Fisher Model.This method is applied to the primary fragments of antisymmetrized molecular dynamics(AMD)simulations for ^(46)Fe+^(46)Fe,^(40)Ca+^(40)Ca and ^(48)Ca+^(48)Ca at 35 MeV/nucleon,in order to make direct comparison to the results from the K(N,Z)method of Ono et al.In our improved method,the extracted values of a_(sym)/T increase as the size of isotopes increases whereas,in the K(N,Z)method,the results show rather constant behavior.This increase in our result is attributed to the surface contribution of the symmetry energy in finite nuclei.In order to evaluate the surface contribution,the relation a_(sym)/T=[a_(sym)^((V))(1-k_(S/V) A^(-1/3))]/T is applied and k_(S/V)=1.20~1.25 was extracted.This value is smaller than those extracted from the mass table,reflecting the weakened surface contribution at higher temperature regime.Δμ/T,the difference of the neutron-proton chemical potentials relative to the temperature,is also extracted in this method at the same time.The average values of the extractedΔμ/T,Δμ/T show a linear dependence on the proton-neutron a_(sym)metry parameter of the system,δ_(sys),andΔμ/T=(15.1±0.2)δ_(sys)-(0.5±0.1)is obtained. 展开更多
关键词 Heavy-ion reactions Symmetry energy Antisymmetrized molecular dynamics model
在线阅读 下载PDF
Advances in the Synthesis of α-Trifluoromethyl Ketones and Their Application via Defluorinative Reactions 被引量:1
13
作者 Cao Sufang Liu Yunyun Wan Jieping 《有机化学》 北大核心 2025年第1期86-103,共18页
α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organi... α-Trifluoromethyl ketones are a class of useful compounds with versatile applications.Their synthetic application via the transformation of the C—F bonds is of particular interest by allowing the synthesis of organic compounds with diverse structures.Herein,the advances in the research areas ofα-trifluoromethyl ketone synthesis and their defluorination reactions are reviewed.Discussion on the mechanisms of the typical reactions has also been provided,in hope of affording some guides to the chemistry ofα-trifluoromethyl ketones in the synthetic methods toward themselves and their derivatives. 展开更多
关键词 α-trifluoromethyl ketone synthetic method synthetic application DEFLUORINATION cascade reaction
原文传递
Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance 被引量:1
14
作者 ZHAI Haoying WEN Lanzong +3 位作者 LIAO Wenjie LI Qin ZHOU Wenjun CAO Kun 《无机化学学报》 北大核心 2025年第5期1037-1048,共12页
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano... Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance. 展开更多
关键词 hydrothermal method tannic acid metal‑organic framework ELECTROCATALYSIS oxygen evolution reaction
在线阅读 下载PDF
Biomass-derived single atom catalysts with phosphorus-coordinated Fe-N_(3)P configuration for efficient oxygen reduction reaction 被引量:2
15
作者 Peng-Peng Guo Abrar Qadir +6 位作者 Chao Xu Kun-Zu Yang Yong-Zhi Su Xin Liu Ping-Jie Wei Qinggang He Jin-Gang Liu 《Green Energy & Environment》 2025年第5期1064-1072,共9页
Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-perform... Exploiting non-precious metal catalysts with excellent oxygen reduction reaction(ORR)performance for energy devices is paramount essential for the green and sustainable society development.Herein,low-cost,high-performance biomass-derived ORR catalysts with an asymmetric Fe-N_(3)P configuration was prepared by a simple pyrolysis-etching technique,where carboxymethyl cellulose(CMC)was used as the carbon source,urea and 1,10-phenanthroline iron complex(FePhen)as additives,and Na_(3)PO_(4)as the phosphorus dopant and a pore-forming agent.The CMC-derived FeNPC catalyst displayed a large specific area(BET:1235 m^(2)g^(-1))with atomically dispersed Fe-N_(3)P active sites,which exhibited superior ORR activity and stability in alkaline solution(E_(1/2)=0.90 V vs.RHE)and Zn-air batteries(P_(max)=149 mW cm^(-2))to commercial Pt/C catalyst(E_(1/2)=0.87 V,P_(max)=118 mW cm^(-2))under similar experimental conditions.This work provides a feasible and costeffective route toward highly efficient ORR catalysts and their application to Zn-air batteries for energy conversion. 展开更多
关键词 Oxygen reduction reaction Biomass-derived electrocatalyst Single atom catalyst Phosphorus dopant Zn-air battery
在线阅读 下载PDF
Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction 被引量:2
16
作者 Guoliang Gao Guangzhen Zhao +4 位作者 Guang Zhu Bowen Sun Zixu Sun Shunli Li Ya-Qian Lan 《Chinese Chemical Letters》 2025年第1期176-200,共25页
Available online Alkaline water electrolysis(AWE)is a prominent technique for obtaining a sustainable hydrogen source and effectively managing the energy infrastructure.Noble metal-based electrocatalysts,owing to thei... Available online Alkaline water electrolysis(AWE)is a prominent technique for obtaining a sustainable hydrogen source and effectively managing the energy infrastructure.Noble metal-based electrocatalysts,owing to their exceptional hydrogen binding energy,exhibit remarkable catalytic activity and long-term stability in the hydrogen evolution reaction(HER).However,the restricted accessibility and exorbitant cost of noble-metal materials pose obstacles to their extensive adoption in industrial contexts.This review investigates strategies aimed at reducing the dependence on noble-metal electrocatalysts and developing a cost-effective alkaline HER catalyst,while considering the principles of sustainable development.The initial discussion covers the fundamental principle of HER,followed by an overview of prevalent techniques for synthesizing catalysts based on noble metals,along with a thorough examination of recent advancements.The subsequent discussion focuses on the strategies employed to improve noble metalbased catalysts,including enhancing the intrinsic activity at active sites and increasing the quantity of active sites.Ultimately,this investigation concludes by examining the present state and future direction of research in the field of electrocatalysis for the HER. 展开更多
关键词 Hydrogen evolution reaction Alkaline water electrolysis ELECTROCATALYSTS Noble metal-based Synthesis method Modification strategy
原文传递
Interfacial Pt-N coordination for promoting oxygen reduction reaction 被引量:1
17
作者 Jialin Cai Yizhe Chen +5 位作者 Ruiwen Zhang Cheng Yuan Zeyu Jin Yongting Chen Shiming Zhang Jiujun Zhang 《Chinese Chemical Letters》 2025年第2期481-485,共5页
Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange... Nitrogen-doping of carbon support(N-C)for platinum(Pt)nanoparticles to form Pt/N-C catalyst represents an effective strategy to promote the electrocatalysis of cathodic oxygen reduction reaction(ORR)in proton exchange membrane fuel cells.For fundamental understanding,clearly identifying the metalsupport effect on enhancement mechanisms of ORR electrocatalysis is definitely needed.In this work,the impact of Pt-support interaction via interfacial Pt-N coordination on electrocatalytic ORR activity and stability in Pt/N-C catalyst is deeply studied through structural/compositional characterizations,electrochemical measurements and theoretical DFT-calculations/AIMD-simulations.The resulting Pt/N-C catalyst exhibits a superior electrocatalytic performance compared to the commercial Pt/C catalyst in both half-cell and H_(2)-O_(2)fuel cell.Experimental and theoretical results reveal that the interfacial Pt-N coordination enables electron transfer from N-C support to Pt nanoparticles,which can weaken the adsorption strength of oxygen intermediates on Pt surface to improve ORR activity and induce the strong Pt-support interaction to enhance electrochemical stability. 展开更多
关键词 Oxygen reduction reaction N-doped carbon PLATINUM Pt-N Theoretical calculations
原文传递
Understanding amorphous PrO_(x)-based N-doped carbon catalyst as an efficient electrocatalyst for oxygen reduction reaction 被引量:1
18
作者 Xiao Man Ying Chang +2 位作者 Shaohong Guo Meilin Jia Jingchun Jia 《Journal of Rare Earths》 2025年第1期73-80,I0003,共9页
The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-bas... The development of an e fficacious and easily prepared no nprecious metal electrocatalyst is crucial for the oxygen reduction reaction(ORR).This work used a dual template method to prepare the amorphous rare earth-based catalyst PrO_(x)-NC,and optimized the calcination temperature and proportion.The PrO_(x)-NC-900 catalyst has high durability and activity and exhibits superior ORR performance in alkaline electrolytes with an onset potential(E_(0))of 0.96 V and a half-wave potential(E_(1/2))of 0.85 V.The research results indicate that the ORR performance of rare earth oxide composite carbon catalysts can be improved by adjusting oxygen vacancies(Ov).In addition,high specific surface area,N rich defect carbon.increased oxygen vacancies,and the synergistic effect of oxygen vacancies and N-doped carbon interfacial layer play a significant part in the enhancement of ORR.The performance of the zinc air battery assembled with PrO_(x)-NC-900 is significantly improved,and rare earth oxides and carbon frameworks originating from metal organic frameworks(MOFs)contribute to the oxygen electrocatalyst and electron transfer rate of the zinc air battery.This catalyst provides promising information for the development of rare earth metal oxide nanostructures as potential candidate materials for ORR in alkaline media. 展开更多
关键词 Rare earths Metal-organic framework Oxygen reduction reaction Zn-air batteries
原文传递
Highly mass activity electrocatalysts with ultralow Pt loading on carbon black for hydrogen evolution reaction
19
作者 Shaorou Ke Yajing Zhao +6 位作者 Xin Min Yanghong Li Ruiyu Mi Yangai Liu Xiaowen Wu Minghao Fang Zhaohui Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期182-190,共9页
Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this s... Pt-based nanocatalysts offer excellent prospects for various industries.However,the low loading of Pt with excellent performance for efficient and stable nanocatalysts still presents a considerable challenge.In this study,nanocatalysts with ultralow Pt content,excellent performance,and carbon black as support were prepared through in-situ synthesis.These~2-nm particles uniformly and stably dispersed on carbon black because of the strong s-p-d orbital hybridizations between carbon black and Pt,which suppressed the agglomeration of Pt ions.This unique structure is beneficial for the hydrogen evolution reaction.The catalysts exhibited remarkable catalytic activity for hydrogen evolution reaction,exhibiting a potential of 100 mV at 100 mA·cm^(-2),which is comparable to those of commercial Pt/C catalysts.Mass activity(1.61 A/mg)was four times that of a commercial Pt/C catalyst(0.37 A/mg).The ultralow Pt loading(6.84wt%)paves the way for the development of next-generation electrocatalysts. 展开更多
关键词 hydrogen evolution reaction ultralow platinum in-situ synthesis ULTRASOUND
在线阅读 下载PDF
Transition Metal Carbonitride MXenes Anchored with Pt Sub-Nanometer Clusters to Achieve High-Performance Hydrogen Evolution Reaction at All pH Range 被引量:1
20
作者 Zhihao Lei Sajjad Ali +18 位作者 CI Sathish MuhammadIbrar Ahmed Jiangtao Qu Rongkun Zheng Shibo Xi Xiaojiang Yu MBHBreese Chao Liu Jizhen Zhang Shuai Qi Xinwei Guan Vibin Perumalsamy Mohammed Fawaz Jae-Hun Yang Mohamed Bououdina Kazunari Domen Ajayan Vinu Liang Qiao Jiabao Yi 《Nano-Micro Letters》 2025年第5期525-539,共15页
Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrog... Transition metal carbides,known as MXenes,particularly Ti_(3)C_(2)T_(x),have been extensively explored as promising materials for electrochemical reactions.However,transition metal carbonitride MXenes with high nitrogen content for electrochemical reactions are rarely reported.In this work,transition metal carbonitride MXenes incorporated with Pt-based electrocatalysts,ranging from single atoms to sub-nanometer dimensions,are explored for hydrogen evolution reaction(HER).The fabricated Pt clusters/MXene catalyst exhibits superior HER performance compared to the single-atom-incorporated MXene and commercial Pt/C catalyst in both acidic and alkaline electrolytes.The optimized sample shows low overpotentials of 28,65,and 154 mV at a current densities of 10,100,and 500 m A cm^(-2),a small Tafel slope of 29 m V dec^(-1),a high mass activity of 1203 mA mgPt^(-1)and an excellent turnover frequency of 6.1 s^(-1)in the acidic electrolyte.Density functional theory calculations indicate that this high performance can be attributed to the enhanced active sites,increased surface functional groups,faster charge transfer dynamics,and stronger electronic interaction between Pt and MXene,resulting in optimized hydrogen absorption/desorption toward better HER.This work demonstrates that MXenes with a high content of nitrogen may be promising candidates for various catalytic reactions by incorporating single atoms or clusters. 展开更多
关键词 MXene Hydrogen evolution reaction Single atom Two-dimensional nanosheets Density functional theory
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部