The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplore...The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.展开更多
Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fag...Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fagus orientalis Lipsky),a widespread species in the Hyrcanian region.Assessing the impacts of plot size on species diversity is fundamental for an ecosystem-based approach to forest management.This study determined the relation of species diversity and plot size by investigating species richness and abundance of both canopy and forest floor.Two hundred and fifty-six sample plots of 625 m^(2) each were layout in a grid pattern across 16 ha.Base plots(25 m×25 m)were integrated in different scales to investigate the effect of plot size on species diversity.The total included nine plots of 0.063,0.125,0.188,0.250,0.375,0.500,0.563,0.750 and 1 ha.Ten biodiversity indices were calculated.The results show that species richness in the different plot sizes was less than the actual value.The estimated value of the Simpson species diversity index was not significantly different from actual values for both canopy and forest floor diversity.The coefficient of variation of this index for the 1-ha sample plot showed the lowest amount across different plot sizes.Inverse Hill species diversity was insignificant difference across different plot sizes with an area greater than 0.500 ha.The modified Hill evenness index for the 1-ha sample size was a correct estimation of the 16-ha for both canopy and forest floor;however,the precision estimation was higher for the canopy layer.All plots greater than 0.250-ha provided an accurate estimation of the Camargo evenness index for forest floor species,but was inaccurate across different plot sizes for the canopy layer.The results indicate that the same plot size did not have the same effect across species diversity measurements.Our results show that correct estimation of species diversity measurements is related to the selection of appropriate indicators and plot size to increase the accuracy of the estimate so that the cost and time of biodiversity management may be reduced.展开更多
Lithium-sulfur batteries(LSBs)offer high energy density and low cost but face challenges such as low sulfur utilization,lithium polysulfides(LiPSs)shuttling,and limited reaction kinetics.To address these issues,we rat...Lithium-sulfur batteries(LSBs)offer high energy density and low cost but face challenges such as low sulfur utilization,lithium polysulfides(LiPSs)shuttling,and limited reaction kinetics.To address these issues,we rationally design a Ti_(3)C_(2)T_(x)/SnS Mott-Schottky heterostructure with a built-in electric field.This three-dimensional(3D)porous architecture can enhance sulfur loading,facilitate electrolyte penetration,and expose more adsorption and catalytic sites.More importantly,the built-in electric field facilitates charge transfer and directs LiPSs migration from SnS to Ti_(3)C_(2)T_(x).The oriented migration of LiPSs enables rapid catalytic conversion at the Ti_(3)C_(2)T_(x)/SnS heterogeneous interface,enhancing electrocatalytic activity and sulfur reduction reaction kinetics.The Ti_(3)C_(2)T_(x)/SnS/S cathode achieves a high initial capacity(1367.1 mAh g^(-1)),excellent rate performance(602.7 mAh g^(-1)at 3 C),and stable long cycling performance with an average capacity decay rate of only 0.029%per cycle at 2 C.Additionally,a high-sulfur-loaded 3 Dprinted cathode with loading of 12.7 mg cm^(-2)manufactured using 3D printing exhibits an areal capacity of 15.0 mAh cm^(-2),retaining 8.9 mAh cm^(-2)after 70 cycles.展开更多
Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tre...Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.展开更多
Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the ...Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.展开更多
The chemical composition and semi-conductive properties of passive film on nickel- based alloy (G3 alloy) in bicarbonate/carbonate buffer solution were investigated by Auger electron spectroscopy (AES), X-ray phot...The chemical composition and semi-conductive properties of passive film on nickel- based alloy (G3 alloy) in bicarbonate/carbonate buffer solution were investigated by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), elec- trochemical impedance spectra (EIS) and Mott-Schottky plot. AES and XPS results showed that the passive film appeared double-layer structure, in which the inner film was composed of nickel oxide, the mixed nickel-chromium-molybdenum-manganese oxides were the major component of the outer film. The electrochemical results revealed that the factors including frequency, potential, time, temperature and pH value can affect the semi-conductive property, the doping densities decreased with increasing potential and pH value, prolonging time and decreasing temperature. According to the above results, it can be concluded that the film protection on the substrate was enhanced with increasing potential and pH value, prolonging time and decreasing temperature.展开更多
基金supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2021L574)the Guizhou Provincial Science and Technology Foundation([2024]ZK General 425 and 438)+1 种基金the National Natural Science Foundation of China(22309033)the Academic Young Talent Foundation of Guizhou Normal University([2022]B05 and B06)。
文摘The electron configuration of the active sites can be effectively modulated by regulating the inherent nanostructure of the electrocatalysts,thereby enhancing their electrocatalytic performance.To tackle the unexplored challenge of substantial electrochemical overpotential,surface reconstruction has emerged as a necessary strategy.Focusing on key aspects such as Janus structures,overflow effects,the d-band center displacement hypothesis,and interface coupling related to electrochemical reactions is essential for water electrolysis.Emerging as frontrunners among next-generation electrocatalysts,Mott-Schottky(M-S)catalysts feature a heterojunction formed between a metal and a semiconductor,offering customizable and predictable interfacial synergy.This review offers an in-depth examination of the processes driving the hydrogen and oxygen evolution reactions(HER and OER),highlighting the benefits of employing nanoscale transition metal nitrides,carbides,oxides,and phosphides in M-S heterointerface catalysts.Furthermore,the challenges,limitations,and future prospects of employing M-S heterostructured catalysts for water splitting are thoroughly discussed.
基金funded by Gorgan University of Agricultural Sciences and Natural Resources(grant number 9318124503).
文摘Plant species diversity is one of the most widely used indicators in ecosystem management.The relation of species diversity with the size of the sample plot has not been fully determined for Oriental beech forests(Fagus orientalis Lipsky),a widespread species in the Hyrcanian region.Assessing the impacts of plot size on species diversity is fundamental for an ecosystem-based approach to forest management.This study determined the relation of species diversity and plot size by investigating species richness and abundance of both canopy and forest floor.Two hundred and fifty-six sample plots of 625 m^(2) each were layout in a grid pattern across 16 ha.Base plots(25 m×25 m)were integrated in different scales to investigate the effect of plot size on species diversity.The total included nine plots of 0.063,0.125,0.188,0.250,0.375,0.500,0.563,0.750 and 1 ha.Ten biodiversity indices were calculated.The results show that species richness in the different plot sizes was less than the actual value.The estimated value of the Simpson species diversity index was not significantly different from actual values for both canopy and forest floor diversity.The coefficient of variation of this index for the 1-ha sample plot showed the lowest amount across different plot sizes.Inverse Hill species diversity was insignificant difference across different plot sizes with an area greater than 0.500 ha.The modified Hill evenness index for the 1-ha sample size was a correct estimation of the 16-ha for both canopy and forest floor;however,the precision estimation was higher for the canopy layer.All plots greater than 0.250-ha provided an accurate estimation of the Camargo evenness index for forest floor species,but was inaccurate across different plot sizes for the canopy layer.The results indicate that the same plot size did not have the same effect across species diversity measurements.Our results show that correct estimation of species diversity measurements is related to the selection of appropriate indicators and plot size to increase the accuracy of the estimate so that the cost and time of biodiversity management may be reduced.
基金the financial support from the National Natural Science Foundation of China(52203340)the Guangdong Basic and Applied Basic Research Foundation(2025A1515012287)+1 种基金the Natural Science Foundation of Hubei Province(Joint Fund,2025AFD334)the Hubei Key Laboratory of Energy Storage and Power Battery(Hubei University of Automotive Technology,ZDK22024B06)。
文摘Lithium-sulfur batteries(LSBs)offer high energy density and low cost but face challenges such as low sulfur utilization,lithium polysulfides(LiPSs)shuttling,and limited reaction kinetics.To address these issues,we rationally design a Ti_(3)C_(2)T_(x)/SnS Mott-Schottky heterostructure with a built-in electric field.This three-dimensional(3D)porous architecture can enhance sulfur loading,facilitate electrolyte penetration,and expose more adsorption and catalytic sites.More importantly,the built-in electric field facilitates charge transfer and directs LiPSs migration from SnS to Ti_(3)C_(2)T_(x).The oriented migration of LiPSs enables rapid catalytic conversion at the Ti_(3)C_(2)T_(x)/SnS heterogeneous interface,enhancing electrocatalytic activity and sulfur reduction reaction kinetics.The Ti_(3)C_(2)T_(x)/SnS/S cathode achieves a high initial capacity(1367.1 mAh g^(-1)),excellent rate performance(602.7 mAh g^(-1)at 3 C),and stable long cycling performance with an average capacity decay rate of only 0.029%per cycle at 2 C.Additionally,a high-sulfur-loaded 3 Dprinted cathode with loading of 12.7 mg cm^(-2)manufactured using 3D printing exhibits an areal capacity of 15.0 mAh cm^(-2),retaining 8.9 mAh cm^(-2)after 70 cycles.
基金supported in part by the intramural research program of the US Department of Agriculture,National Institute of Food and Agriculture,Evans-Allen#1024525,and Capacity Building Grant#006531supported in part by the US National Science Foundation RII Track 2 FEC:Leveraging Intelligent Informatics and Smart Data for Improved Understanding of Northern Forest Ecosystem Resiliency(INSPIRES)#1920908by The Lyndhurst Foundation.
文摘Understanding local variation in forest biomass allows for a better evaluation of broad-scale patterns and interpretation of forest ecosystems’role in carbon dynamics.This study focuses on patterns of aboveground tree biomass within a fully censused 20 ha forest plot in a temperate forest of northern Alabama,USA.We evaluated the relationship between biomass and topography using ridge and valley landforms along with digitally derived moisture and solar radiation indices.Every live woody stem over 1 cm diameter at breast height within this plot was mapped,measured,and identified to species in 2019-2022,and diameter data were used along with speciesspecific wood density to map the aboveground biomass at the scale of 20 m×20 m quadrats.The aboveground tree biomass was 211 Mg·ha^(-1).Other than small stream areas that experienced recent natural disturbances,the total stand biomass was not associated with landform or topographic indices.Dominant species,in contrast,had strong associations with topography.American beech(Fagus grandifolia)and yellow-poplar(Liriodendron tulipfera)dominated the valley landform,with 37% and 54% greater biomass in the valley than their plot average,respectively.Three other dominant species,white oak(Quercus alba),southern shagbark hickory(Carya carolinaeseptentrionalis),and white ash(Fraxinus americana),were more abundant on slopes and benches,thus partitioning the site.Of the six dominant species,only sugar maple(Acer saccharum)was not associated with landform.Moreover,both topographic wetness and potential radiation indices were significant predictors of dominant species biomass within each of the landforms.The study highlights the need to consider species when examining forest productivity in a range of site conditions.
基金National Natural Science Foundation of China(30070679)the Natural Science Foundation of Hubei Province(2004ABA138)+1 种基金the Key Technology R&D Programme Foundation of Hubei Province(2002AA301C43)the Hubei Health Bureau Research Programme Foundation(NX200427)
文摘Five years' (2000-2004) continuous study has been carried out on small mammals such as rodents in seven different sample plots, at three different altitudes and in six different ecological environment types in the eastern part of the Wuling Mountains, south bank of the Three Gorges of Yangtze River in Hubei. A total of 29 297 rat clamps/times were placed and 2271 small mammals such as rodents were captured, and 26 small mammals were captured by other means. All the small mammals captured belonged to 8 families 19 genera and 24 species, of which rodentia accounted for 70.83% and insectivora 29.17%. Through analysis of the data, the results showed that: 1 ) although the species richness had a trend of increasing along different sample plots as altitude increased from south to north, quite a few species showed a wide habitat range in a vertical distribution ( 15 species were dispersed over three zones and two species over two zones) , indicating a strong adaptability of small mammals such as rOdents at lower altitudes in most areas and comparatively less vertical span of entire mountains; 2) whether in seven different sample plots or six different ecological types, Apodemus agrarius and Rattus norvegicus were dominant species below 1200m, and Anourosorex squamipes, Niviventer confucianus and Apodemus draco were dominant above altitudes of 1300m, however, in quantity they were short of identical regularity, meaning they did not increase as the altitude did, or decrease as the ecological areas changed; 3)the density in winter was obviously greater than that in spring, and the distribution showed an increasing trend along with altitude, but the density in different sample plots was short of identical regularity, showing changes in different seasons and altitude grades had an important impact on small mammals such as rodents; 4) in species diversity and evenness index, there were obvious changes between the seven different sample plots, probably caused by frequent human interference in this area. Comparatively speaking, there was less human interference at high altitudes where vegetation was rich and had a high diversity and evenness index, and the boundary effect and community stability were obvious. Most ecological types have been seriously interfered with due to excessive assart at low altitudes with singular vegetation and low diversity and evenness index and poor community stability, showing an ecosystem with poor anti-reversion. If human interference can be reduced in those communities at high altitudes with low diversity and evenness index, the biological diversity in the communities will gradually recover to similar levels of other ecological areas.
文摘The chemical composition and semi-conductive properties of passive film on nickel- based alloy (G3 alloy) in bicarbonate/carbonate buffer solution were investigated by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), elec- trochemical impedance spectra (EIS) and Mott-Schottky plot. AES and XPS results showed that the passive film appeared double-layer structure, in which the inner film was composed of nickel oxide, the mixed nickel-chromium-molybdenum-manganese oxides were the major component of the outer film. The electrochemical results revealed that the factors including frequency, potential, time, temperature and pH value can affect the semi-conductive property, the doping densities decreased with increasing potential and pH value, prolonging time and decreasing temperature. According to the above results, it can be concluded that the film protection on the substrate was enhanced with increasing potential and pH value, prolonging time and decreasing temperature.