While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re...While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.展开更多
Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,includi...Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).展开更多
Large-angle stimulated Raman scattering(LA-SRS)in a longitudinally inhomogeneous plasma with a transverse density modulation is studied using a three-wave coupled model and numerical simulations.The simulations show t...Large-angle stimulated Raman scattering(LA-SRS)in a longitudinally inhomogeneous plasma with a transverse density modulation is studied using a three-wave coupled model and numerical simulations.The simulations show that the scattering angle of SRS in a longitudinally inhomogeneous plasma can be significantly affected by transverse density modulation.Under transverse density modulation conditions,the laser focuses into underdense regions,owing to the transversely modulated refractive index.The angle of LA-SRS,neither a purely 90° angle side scattering nor purely backscattering,is almost consistent with the specific angle at which the density inhomogeneity vanishes.In modulated plasmas,the nonuniform distribution of laser intensity shifts the regions of scattering and gain compared with those in uniform plasmas,ultimately affecting the laser transmission.SRS is suppressed in weakly modulated regimes,whereas it is enhanced under strong modulation conditions,and a theoretical criterion distinguishing between strong and weak modulation is established.展开更多
The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain...The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain perception.Despite extensive research efforts to unravel its mechanisms,the operational intricacies of SRD remain poorly understood.Advances in experimental methodologies such as brain imaging and chemogenetics have facilitated deeper investigations into the involvement of SRD in various pain disorders.This comprehensive review aims to analyze 36 years(1989–2024)of preclinical research highlighting the critical role of SRD in diffuse noxious inhibitory control(DNIC),also known as conditioned pain modulation(CPM)in humans,and its interconnected neural circuits.Moreover,this review explores the neural circuits related to SRD,including locus coeruleus(LC)-SRD,parabrachial nucleus(PBN)-SRD,rostroventromedial medulla(RVM)-ventrolateral medulla(VLM)-SRD,anterior cingulate cortex(ACC)-SRD,medial medullary reticular formation(mMRF)-SRD,and dorsal striatum(DS)-SRD.Their activation also plays a significant role in analgesia.The pivotal roles of neurotransmitters such asμ-opioid receptor(MOR),noradrenaline,and metabotropic glutamate receptor 7(mGluR7)in modulating SRD responsiveness to pain stimuli are also discussed,as are the influences of SRD on different pain types.This review identified promising avenues for innovative analgesic treatments by shedding light on potential therapeutic strategies targeting SRD.展开更多
Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,...Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.展开更多
Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitat...Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.展开更多
Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transce...Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.展开更多
A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter ident...A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.展开更多
This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radi...This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.展开更多
In this paper,we focus on combining the theories of fuzzy soft sets with Γ-modules,and establishing a new framework for fuzzy soft Γ-submodules.The main contributions of the paper are 3-fold.First,we present the con...In this paper,we focus on combining the theories of fuzzy soft sets with Γ-modules,and establishing a new framework for fuzzy soft Γ-submodules.The main contributions of the paper are 3-fold.First,we present the concepts of(R,S)-bi-Γ-submodules,quasi-Γ-submodules and regular Γ-modules.Meanwhile,some illustrative examples are given to show the rationality of the definitions introduced in this paper.Second,several new kinds of generalized fuzzy soft Γ-submodules are proposed,and related properties and mutual relationships are also investigated.Third,we discover some intrinsic connections between the generalized fuzzy soft Γ-submodules presented in this paper and crisp Γ-submodules,and describe the relationships between regular Γ-modules and the generalized fuzzy soft Γ-submodules presented in this paper.展开更多
In modern wireless communication and electromagnetic control,automatic modulationclassification(AMC)of orthogonal frequency division multiplexing(OFDM)signals plays animportant role.However,under Doppler frequency shi...In modern wireless communication and electromagnetic control,automatic modulationclassification(AMC)of orthogonal frequency division multiplexing(OFDM)signals plays animportant role.However,under Doppler frequency shift and complex multipath channel conditions,extracting discriminative features from high-order modulation signals and ensuring model inter-pretability remain challenging.To address these issues,this paper proposes a Fourier attention net-work(FAttNet),which combines an attention mechanism with a Fourier analysis network(FAN).Specifically,the method directly converts the input signal to the frequency domain using the FAN,thereby obtaining frequency features that reflect the periodic variations in amplitude and phase.Abuilt-in attention mechanism then automatically calculates the weights for each frequency band,focusing on the most discriminative components.This approach improves both classification accu-racy and model interpretability.Experimental validation was conducted via high-order modulationsimulation using an RF testbed.The results show that under three different Doppler frequencyshifts and complex multipath channel conditions,with a signal-to-noise ratio of 10 dB,the classifi-cation accuracy can reach 89.1%,90.4%and 90%,all of which are superior to the current main-stream methods.The proposed approach offers practical value for dynamic spectrum access and sig-nal security detection,and it makes important theoretical contributions to the application of deeplearning in complex electromagnetic signal recognition.展开更多
Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the p...Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.展开更多
Let R be a commutative noetherian local ring. In this paper, we study Gorenstein projective, injective and flat modules with respect to a semidualizing R-module C, and we give some connections between C-Gorenstein hom...Let R be a commutative noetherian local ring. In this paper, we study Gorenstein projective, injective and flat modules with respect to a semidualizing R-module C, and we give some connections between C-Gorenstein homological dimensions and the Auslander categories of R.展开更多
In this article, we define almost prime submodules as a new generalization of prime and weakly prime submodules of unitary modules over a commutative ring with identity. We study some basic properties of almost prime ...In this article, we define almost prime submodules as a new generalization of prime and weakly prime submodules of unitary modules over a commutative ring with identity. We study some basic properties of almost prime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.展开更多
Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and on...Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings.展开更多
The aim of this paper is to study the conditions by which a P-prime sub-module can be expressed as a finite intersection or union of P-prime submodules. Also corresponding to dimension and rank of modules, some equiva...The aim of this paper is to study the conditions by which a P-prime sub-module can be expressed as a finite intersection or union of P-prime submodules. Also corresponding to dimension and rank of modules, some equivalent conditions for a ring to be a Dedekind domain are given.展开更多
In this article, we introduce the notion of fuzzy G-module by defining the group action of G on a fuzzy set of a Z-module M. We establish the cases in which fuzzy submodules also become fuzzy G-submodules. Notions of ...In this article, we introduce the notion of fuzzy G-module by defining the group action of G on a fuzzy set of a Z-module M. We establish the cases in which fuzzy submodules also become fuzzy G-submodules. Notions of a fuzzy prime submodule, fuzzy prime G-submodule, fuzzy semi prime submodule, fuzzy G-semi prime submodule, G-invariant fuzzy submodule and G-invariant fuzzy prime submodule of M are introduced and their properties are described. The homomorphic image and pre-image of fuzzy G-submodules, G-invariant fuzzy submodules and G-invariant fuzzy prime submodules of M are also established.展开更多
Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarizat...Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.展开更多
Exosomes have shown good potential in ischemic injury disease treatments.However,evidence about their effect and molecular mechanisms in osteonecrosis of femoral head(ONFH)treatment is still limited.Here,we revealed t...Exosomes have shown good potential in ischemic injury disease treatments.However,evidence about their effect and molecular mechanisms in osteonecrosis of femoral head(ONFH)treatment is still limited.Here,we revealed the cell biology characters of ONFH osteonecrosis area bone tissue in single cell scale and thus identified a novel ONFH treatment approach based on M2 macrophages-derived exosomes(M2-Exos).We further show that M2-Exos are highly effective in the treatment of ONFH by modulating the phenotypes communication between neutrophil and endothelium including neutrophil extracellular traps formation and endothelial phenotype transition.Additionally,we identified that M2-Exos’therapeutic effect is attributed to the high content of miR-93-5p and constructed miR-93-5p overexpression model in vitro and in vivo based on lentivirus and adenoassociated virus respectively.Then we found miR-93-5p can not only reduce neutrophil extracellular traps formation but also improve angiogenic ability of endothelial cells.These results provided a new theoretical basis for the clinical application of ONFH therapeutic exosomes.展开更多
Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of ...Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO.This study focuses on the ability of the collagen receptor,discoidin domain receptor 2(DDR2),to regulate BMP activity.As will be shown,induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice.In addition,Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva.In cells migrating into BMP2 implants,DDR2 is co-expressed with GLI1,a skeletal stem cell marker,and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages.Consistent with this distribution,conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals.This response was explained by selective inhibition of Gli1+cell proliferation without changes in apoptosis.The basis for this DDR2 requirement was explored further using bone marrow stromal cells.Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo,bone formation,early BMP responses including SMAD phosphorylation remained largely intact.Instead,Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates,YAP and TAZ.This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix,which subsequently affect BMP responsiveness.In summary,DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.展开更多
基金funding from the National Key Research and Development Program of China(No.2018YFE0110000)the National Natural Science Foundation of China(No.11274259,No.11574258)the Science and Technology Commission Foundation of Shanghai(21DZ1205500)in support of the present research.
文摘While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.
基金supported by the Hellenic Foundation for Research and Innovation,HFRI,“2nd Call for HFRI Research Projects to support Faculty Members&Researchers”Project 02667 to GL.
文摘Lysophosphatidic acid(LPA)is a pleiotropic lipid agonist essential for functions of the central nervous system(CNS).It is abundant in the developing and adult brain while its concentration in biological fluids,including cerebrospinal fluid,varies significantly(Figure 1Α;Yung et al.,2014).LPA actually corresponds to a variety of lipid species that include different stereoisomers with either saturated or unsaturated fatty acids bearing likely differentiated biological activities(Figure 1Α;Yung et al.,2014;Hernández-Araiza et al.,2018).
基金supported by the National Natural Science Foundation of China under Grant Nos.U2430207,12035002,and 12305258by the CAEP Foundation under Grant No.YZJJZQ2023020.
文摘Large-angle stimulated Raman scattering(LA-SRS)in a longitudinally inhomogeneous plasma with a transverse density modulation is studied using a three-wave coupled model and numerical simulations.The simulations show that the scattering angle of SRS in a longitudinally inhomogeneous plasma can be significantly affected by transverse density modulation.Under transverse density modulation conditions,the laser focuses into underdense regions,owing to the transversely modulated refractive index.The angle of LA-SRS,neither a purely 90° angle side scattering nor purely backscattering,is almost consistent with the specific angle at which the density inhomogeneity vanishes.In modulated plasmas,the nonuniform distribution of laser intensity shifts the regions of scattering and gain compared with those in uniform plasmas,ultimately affecting the laser transmission.SRS is suppressed in weakly modulated regimes,whereas it is enhanced under strong modulation conditions,and a theoretical criterion distinguishing between strong and weak modulation is established.
基金funded by the Key Program of the National Natural Science Foundation of China(No.82130122).
文摘The subnucleus reticularis dorsalis(SRD),also known as the dorsal reticular nucleus(DRt)or dorsal medullary reticular nucleus(MdD),which resides at the caudal end of the medulla,plays a pivotal role in regulating pain perception.Despite extensive research efforts to unravel its mechanisms,the operational intricacies of SRD remain poorly understood.Advances in experimental methodologies such as brain imaging and chemogenetics have facilitated deeper investigations into the involvement of SRD in various pain disorders.This comprehensive review aims to analyze 36 years(1989–2024)of preclinical research highlighting the critical role of SRD in diffuse noxious inhibitory control(DNIC),also known as conditioned pain modulation(CPM)in humans,and its interconnected neural circuits.Moreover,this review explores the neural circuits related to SRD,including locus coeruleus(LC)-SRD,parabrachial nucleus(PBN)-SRD,rostroventromedial medulla(RVM)-ventrolateral medulla(VLM)-SRD,anterior cingulate cortex(ACC)-SRD,medial medullary reticular formation(mMRF)-SRD,and dorsal striatum(DS)-SRD.Their activation also plays a significant role in analgesia.The pivotal roles of neurotransmitters such asμ-opioid receptor(MOR),noradrenaline,and metabotropic glutamate receptor 7(mGluR7)in modulating SRD responsiveness to pain stimuli are also discussed,as are the influences of SRD on different pain types.This review identified promising avenues for innovative analgesic treatments by shedding light on potential therapeutic strategies targeting SRD.
文摘Following publication of the original article[1],the authors found that they pasted the same data when drawing XRD for sample NCO-1 and NCO-2 in Fig.2a,however,the XRD of all four samples in the manuscript was tested,and XRD raw data were kept and can be offered.The correct Fig.2 has been provided in this Correction.
基金supported by the External Cooperation Program of Science and Technology of Fujian Province,China(2024I0016)the Fundamental Research Funds for the Central Universities(ZQN-1005).
文摘Multilevel coding(MLC)is a commonly used polar coded modulation scheme,but challenging to implement in engineering due to its high complexity and long decoding delay for high-order modulations.To address these limitations,a novel two-level serially concatenated MLC scheme,in which the bitlevels with similar reliability are bundled and transmitted together,is proposed.The proposed scheme hierarchically protects the two bit-level sets:the bitlevel sets at the higher level are sufficiently reliable and do not require excessive resources for protection,whereas only the bit-level sets at the lower level are encoded by polar codes.The proposed scheme has the advantages of low power consumption,low delay and high reliability.Moreover,an optimized constellation signal labeling rule that can enhance the performance is proposed.Finally,the superiority of the proposed scheme is validated through the theoretical analysis and simulation results.Compared with the bit interleaving coding modulation(BICM)scheme,under 256-quadrature amplitude modulation(QAM),the proposed scheme attains a performance gain of 1.0 dB while reducing the decoding complexity by 54.55%.
基金supported by the Strategic Priority Research Program of CAS(Grant No.XDB43020202)the Natural Science Foundation of China(Grant Nos.61934007,62274153,62090053).
文摘Currently,the global 5G network,cloud computing,and data center industries are experiencing rapid development.The continuous growth of data center traffic has driven the vigorous progress in high-speed optical transceivers for optical interconnection within data centers.The electro-absorption modulated laser(EML),which is widely used in optical fiber communications,data centers,and high-speed data transmission systems,represents a high-performance photoelectric conversion device.Compared to traditional directly modulated lasers(DMLs),EMLs demonstrate lower frequency chirp and higher modulation bandwidth,enabling support for higher data rates and longer transmission distances.This article introduces the composition,working principles,manufacturing processes,and applications of EMLs.It reviews the progress on advanced indium phosphide(InP)-based EML devices from research institutions worldwide,while summarizing and comparing data transmission rates and key technical approaches across various studies.
基金supported by the National Science and Technology Major Project(Grant No.J2019-Ⅳ-0003-0070).
文摘A novel parameter identification method for magnetic levitation bearing rotor systems is proposed,based on the modulation function method.The fundamental principle of the modulation function method for parameter identification is derived on the basis of the characteristics of the modulation function.The transformation of the differential equation model of a continuous system into a general algebraic equation model is effectively achieved,thereby avoiding the influence of errors introduced by the initial value and differential derivation of the system.Modulation function method parameter identification models have been established for single-degree-of-freedom and multi-degree-of-freedom magnetic levitation bearing rotor systems.The influence of different parameters of Hartley modulation function on the accuracy of system parameter identification has been investigated,thus providing a basis for the design of Hartley modulation function parameters.Simulation and experimental results demonstrate that the modulation function method can effectively identify system parameters despite the presence of system noise.
基金supported by the National Key R&D Program of China (No. 2022YFE0204100)the National Natural Science Foundation of China (12205067 and 12375199)the Fundamental Research Funds for the Central Universities (Grant No. HIT.OCEF. 2022036)。
文摘This paper establishes an amplitude modulation heating model, simulating the far-field radiation of ELF/VLF signals generated by modulation heating, as well as the specific location and longitudinal extent of the radiation source. We consider various modulation waveforms and find that square-wave modulation has the highest excitation efficiency for ELF/VLF signals, and that square-wave modulation with a smaller duty cycle(<50%) exhibits higher excitation efficiency for ELF/VLF signals, while the sin^(2)t waveform modulation yields the lowest proportion of harmonic energy in the generated signals. The amplitude of the second harmonic generated by the sin^(2)t waveform is less than one-tenth that of the fundamental frequency, and the energy of higher-frequency harmonics can be negligibly small compared with those of the fundamental wave. It is a challenging task to achieve a balance between enhancing the excitation efficiency of ELF/VLF signals and also suppressing harmonics generated by the modulated heating process. This is because the harmonics are correspondingly enhanced as the excitation efficiency of the signals is increased. However, we find that under conditions of varying effective radiant power and modulation frequency, as long as the modulation waveform is unchanged, the energy ratio between the fundamental frequency signal generated by modulated heating and each harmonic is relatively fixed, with changes only in signal intensity and the location of the radiation source zone. This implies that one can first select modulation waveforms that make the signal less prone to distortion, then increase the effective radiated power to enhance the signal strength, without concern for harmonic interference of the fundamental signal.
基金Supported by the National Natural Science Foundation of China (61175055)the Innovation Term of Higher Education of Hubei Province,China (T201109)+1 种基金the Natural Science Foundation of Hubei Province (2012FFB01101)the Natural Science Foundation of Education Committee of Hubei Province (D20131903)
文摘In this paper,we focus on combining the theories of fuzzy soft sets with Γ-modules,and establishing a new framework for fuzzy soft Γ-submodules.The main contributions of the paper are 3-fold.First,we present the concepts of(R,S)-bi-Γ-submodules,quasi-Γ-submodules and regular Γ-modules.Meanwhile,some illustrative examples are given to show the rationality of the definitions introduced in this paper.Second,several new kinds of generalized fuzzy soft Γ-submodules are proposed,and related properties and mutual relationships are also investigated.Third,we discover some intrinsic connections between the generalized fuzzy soft Γ-submodules presented in this paper and crisp Γ-submodules,and describe the relationships between regular Γ-modules and the generalized fuzzy soft Γ-submodules presented in this paper.
基金supported by the National Natural Science Foundation of China(No.62027801).
文摘In modern wireless communication and electromagnetic control,automatic modulationclassification(AMC)of orthogonal frequency division multiplexing(OFDM)signals plays animportant role.However,under Doppler frequency shift and complex multipath channel conditions,extracting discriminative features from high-order modulation signals and ensuring model inter-pretability remain challenging.To address these issues,this paper proposes a Fourier attention net-work(FAttNet),which combines an attention mechanism with a Fourier analysis network(FAN).Specifically,the method directly converts the input signal to the frequency domain using the FAN,thereby obtaining frequency features that reflect the periodic variations in amplitude and phase.Abuilt-in attention mechanism then automatically calculates the weights for each frequency band,focusing on the most discriminative components.This approach improves both classification accu-racy and model interpretability.Experimental validation was conducted via high-order modulationsimulation using an RF testbed.The results show that under three different Doppler frequencyshifts and complex multipath channel conditions,with a signal-to-noise ratio of 10 dB,the classifi-cation accuracy can reach 89.1%,90.4%and 90%,all of which are superior to the current main-stream methods.The proposed approach offers practical value for dynamic spectrum access and sig-nal security detection,and it makes important theoretical contributions to the application of deeplearning in complex electromagnetic signal recognition.
基金supported by the National Natural Science Foundation of China(51767017)the Basic Research Innovation Group Project of Gansu Province(18JR3RA133)the Industrial Support and Guidance Project of Universities in Gansu Province(2022CYZC-22).
文摘Photovoltaic (PV) modules, as essential components of solar power generation systems, significantly influence unitpower generation costs.The service life of these modules directly affects these costs. Over time, the performanceof PV modules gradually declines due to internal degradation and external environmental factors.This cumulativedegradation impacts the overall reliability of photovoltaic power generation. This study addresses the complexdegradation process of PV modules by developing a two-stage Wiener process model. This approach accountsfor the distinct phases of degradation resulting from module aging and environmental influences. A powerdegradation model based on the two-stage Wiener process is constructed to describe individual differences inmodule degradation processes. To estimate the model parameters, a combination of the Expectation-Maximization(EM) algorithm and the Bayesian method is employed. Furthermore, the Schwarz Information Criterion (SIC) isutilized to identify critical change points in PV module degradation trajectories. To validate the universality andeffectiveness of the proposed method, a comparative analysis is conducted against other established life predictiontechniques for PV modules.
基金Supported by the National Natural Science Foundation of China(Grant No.11261050)
文摘Let R be a commutative noetherian local ring. In this paper, we study Gorenstein projective, injective and flat modules with respect to a semidualizing R-module C, and we give some connections between C-Gorenstein homological dimensions and the Auslander categories of R.
文摘In this article, we define almost prime submodules as a new generalization of prime and weakly prime submodules of unitary modules over a commutative ring with identity. We study some basic properties of almost prime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
文摘Some homological properties of R-modules were investigated by matrices over aring R. Given two cardinal numbers α, β and an α x β row-finite matrix A, it was proved thatExt_R^1(R^((α))/R^((β))A, M) = 0 if and only if M_α/r_(M_α)(R^((β))A) ≈ Hom_R(R^((β))A,M) ifand only if r_(M_β)l_(R^((β)))(A) = AM_α. Thus, the notion of (m,n)-injectivity was extended.Moreover, ( α, β) -flatness was characterized via annihilators of matrices, factorizations ofhomomorphisms as well as homological groups so that (m, n)-flat modules, f-projective modules andn-projective modules were consolidated under the notion of (α, β)-flat modules. Furthermore, acharacterization of left R-ML modules and some equivalent conditions for R^((β)) to be left R-MLwere presented. Consequently, the notions of coherent rings, (m, n)-coherent rings and π-coherentrings were consolidated under that of (α, β)-coherent rings.
文摘The aim of this paper is to study the conditions by which a P-prime sub-module can be expressed as a finite intersection or union of P-prime submodules. Also corresponding to dimension and rank of modules, some equivalent conditions for a ring to be a Dedekind domain are given.
文摘In this article, we introduce the notion of fuzzy G-module by defining the group action of G on a fuzzy set of a Z-module M. We establish the cases in which fuzzy submodules also become fuzzy G-submodules. Notions of a fuzzy prime submodule, fuzzy prime G-submodule, fuzzy semi prime submodule, fuzzy G-semi prime submodule, G-invariant fuzzy submodule and G-invariant fuzzy prime submodule of M are introduced and their properties are described. The homomorphic image and pre-image of fuzzy G-submodules, G-invariant fuzzy submodules and G-invariant fuzzy prime submodules of M are also established.
基金supports from National Key Research and Development Program of China(2021YFB2800703)Sichuan Province Science and Technology Support Program(25QNJJ2419)+1 种基金National Natural Science Foundation of China(U22A2008,12404484)Laoshan Laboratory Science and Technology Innovation Project(LSKJ202200801).
文摘Diatomic metasurfaces designed for interferometric mechanisms possess significant potential for the multidimensional manipulation of electromagnetic waves,including control over amplitude,phase,frequency,and polarization.Geometric phase profiles with spin-selective properties are commonly associated with wavefront modulation,allowing the implementation of conjugate strategies within orthogonal circularly polarized channels.Simultaneous control of these characteristics in a single-layered diatomic metasurface will be an apparent technological extension.Here,spin-selective modulation of terahertz(THz)beams is realized by assembling a pair of meta-atoms with birefringent effects.The distinct modulation functions arise from geometric phase profiles characterized by multiple rotational properties,which introduce independent parametric factors that elucidate their physical significance.By arranging the key parameters,the proposed design strategy can be employed to realize independent amplitude and phase manipulation.A series of THz metasurface samples with specific modulation functions are characterized,experimentally demonstrating the accuracy of on-demand manipulation.This research paves the way for all-silicon meta-optics that may have great potential in imaging,sensing and detection.
基金the support of the National Natural Science Foundation of China (Grant No.82272503)Natural Science Foundation of Zhejiang Province (Grant No. LQN25H060006)
文摘Exosomes have shown good potential in ischemic injury disease treatments.However,evidence about their effect and molecular mechanisms in osteonecrosis of femoral head(ONFH)treatment is still limited.Here,we revealed the cell biology characters of ONFH osteonecrosis area bone tissue in single cell scale and thus identified a novel ONFH treatment approach based on M2 macrophages-derived exosomes(M2-Exos).We further show that M2-Exos are highly effective in the treatment of ONFH by modulating the phenotypes communication between neutrophil and endothelium including neutrophil extracellular traps formation and endothelial phenotype transition.Additionally,we identified that M2-Exos’therapeutic effect is attributed to the high content of miR-93-5p and constructed miR-93-5p overexpression model in vitro and in vivo based on lentivirus and adenoassociated virus respectively.Then we found miR-93-5p can not only reduce neutrophil extracellular traps formation but also improve angiogenic ability of endothelial cells.These results provided a new theoretical basis for the clinical application of ONFH therapeutic exosomes.
基金Scientific Research Training Program for Young Talents of Union Hospital,Tongji Medical College,Huazhong University of Science and Technology(F.W.),NIH/NIDCR grants DE029012 and DE029465Department of Defense Grant PR190899(R.T.F.)Michigan Musculoskeletal Health Core Center(NIH/NIAMS P30 AR069620)。
文摘Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification(HO).Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO.This study focuses on the ability of the collagen receptor,discoidin domain receptor 2(DDR2),to regulate BMP activity.As will be shown,induction of bone formation by subcutaneous BMP2 implants is severely compromised in Ddr2-deficient mice.In addition,Ddr2 deficiency attenuates HO in mice expressing the ACVR1 mutation associated with human fibrodysplasia ossificans progressiva.In cells migrating into BMP2 implants,DDR2 is co-expressed with GLI1,a skeletal stem cell marker,and DDR2/GLI1-positive cells participate in BMP2-induced bone formation where they contribute to chondrogenic and osteogenic lineages.Consistent with this distribution,conditional knockout of Ddr2 in Gli1-expressing cells inhibited bone formation to the same extent seen in globally Ddr2-deficient animals.This response was explained by selective inhibition of Gli1+cell proliferation without changes in apoptosis.The basis for this DDR2 requirement was explored further using bone marrow stromal cells.Although Ddr2 deficiency inhibited BMP2-dependent chondrocyte and osteoblast differentiation and in vivo,bone formation,early BMP responses including SMAD phosphorylation remained largely intact.Instead,Ddr2 deficiency reduced the nuclear/cytoplasmic ratio of the Hippo pathway intermediates,YAP and TAZ.This suggests that DDR2 regulates Hippo pathway-mediated responses to the collagen matrix,which subsequently affect BMP responsiveness.In summary,DDR2 is an important modulator of BMP signaling and a potential therapeutic target both for enhancing regeneration and treating HO.