期刊文献+

Gorenstein Homological Dimensions and Auslander Categories with Respect to a Semidualizing Module 被引量:2

Gorenstein Homological Dimensions and Auslander Categories with Respect to a Semidualizing Module
原文传递
导出
摘要 Let R be a commutative noetherian local ring. In this paper, we study Gorenstein projective, injective and flat modules with respect to a semidualizing R-module C, and we give some connections between C-Gorenstein homological dimensions and the Auslander categories of R. Let R be a commutative noetherian local ring. In this paper, we study Gorenstein projective, injective and flat modules with respect to a semidualizing R-module C, and we give some connections between C-Gorenstein homological dimensions and the Auslander categories of R.
出处 《Journal of Mathematical Research with Applications》 CSCD 2013年第3期297-311,共15页 数学研究及应用(英文版)
基金 Supported by the National Natural Science Foundation of China(Grant No.11261050)
关键词 semidualizing modules C-Gorenstein injective modules C-Corenstein projective modules C-Gorenstein fiat modules Auslander categories. semidualizing modules C-Gorenstein injective modules C-Corenstein projective modules C-Gorenstein fiat modules Auslander categories.
  • 相关文献

参考文献22

  • 1M. AUSLANDER, M. BRIDGER. Stable Module Theory. American Mathematical Society, Providence, R.I. 1969.
  • 2L. L. AVRAMOV, H. B. FOXBY. Gorenstein local homomorphisms. Bull. Amer. Math. Soc.(N.S.), 1990, 23(1): 145-150.
  • 3L. L. AVRAMOV, H. B. FOXBY. R/ng homomorphisrns and finite Gorenstein dimension. Proc. London Math. Soc. (3), 1997, 75(2): 241-270.
  • 4H. BASS. Injective dimension in Noetherian rings. Trans. Amer. Math. Soc., 1962, 102: 18-29.
  • 5L.W. CHRISTENSEN. Semi-dualizing complexes and their Anslander categories. Trans. Amer. Math. Soc., 2001, 353(5): 1839-1883.
  • 6L. W. CHRISTENSEN, A. FRANKILD, H. HOLM. On Gorenstein projective, injective and fiat dimensions-a functorial description with applications. J. Algebra, 2006, 302(1): 231-279.
  • 7E. E. ENOCHS. Flat covers and fiat cotorsion modules. Proc. Amer. Math. Soc., 1984, 92(2): 179-184.
  • 8E. E. ENOCHS, O. M. G. JENDA. Relative Homological Algebra. Walter de Gruyter & Co., Berlin, 2000.
  • 9M. A. ESMKHANI, M. TOUSI. Gorenstein homological dimensions and Auslander categories. J. Algebra, 2007. 308(1): 321-329.
  • 10M. A. ESMKHANI, M. TOUSI. Gorenstein injective modules and Auslander categories. Arch. Math. (Basel), 2007, 89(2): 114-123.

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部