Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3...Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.展开更多
A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning...A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup.展开更多
The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behav...The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.展开更多
基金Project supported by Major Provincial Science and Technology Programs of Hunan (2011FJ1005)Central College on the 2010 Operational Costs of Basic Research Project (2010QZZD0101)
文摘Nano-La2O3 was modified with the vinyltrimethoxylsilane by hydrolysis and a novel poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) based composite polymer electrolyte doped with the modified nano-La2O3 was prepared by phase inversion method. The physicochemical properties were studied by SEM, FT-IR, XRD, TG and electrochemical methods. The results of FT-IR indicated that the nano-La2O3 was successfully modified with vinyltrimethoxylsilane. The XRD analysis showed that the incorporation of modified nano-La2O3 into the polymer electrolyte membranes could effectively reduce the crystallinity of PVDF-HFP, and the characterizations also suggested that thermal stability and electrochemical stability window could reach to 382°C and 5.1V, respectively; the reciprocal temperature dependence of ionic conductivity followed Vogel-Tamman-Fulcher (VTF) relation, ionic conductivity at room temperature was up to 3.5×10-3S/cm and lithium ions transference number was up to 0.42; the interfacial resistance increased at initial value about353Ω/cm2 and reached a steady value about 559Ω/cm2 after 5d storage at 30°C. The fabricated Li/As-prepared electrolytes/LiCoO2 coin cell showed excellent rate and cycle performances.
基金Project supported by National Natural Science Foundation of China(51308282)the China Postdoctoral Science Foundation Funded Project(2012M511254)the Natural Science Research Project of Jiangsu Province’s Education Department(12KJD610004)
文摘A novel fly ash cenospheres(FACs)-supported CeO2 composite(CeO2/FACs) was successfully synthesized by the modified pyrolysis process.The prepared composites were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), and diffuse reflection spectra(DRS) techniques.XRD results indicated that the CeO2 film coated on cenospheres was a face-centered cubic structure.SEM images confirmed that the CeO2 film was relatively compact.XPS results showed that Ce was present as both Ce4+ and Ce3+ oxidation states in CeO2 film coated on FACs substrate.The bandgap of the composite was narrower compared with the pure CeO2.The as-prepared material exhibited good photocatalytic activity for the decolorization of methylene blue(MB) under visible light irradiation, and the first-order reaction rate constant(k) of 0.0028 min–1 for CeO2/FACs composite was higher than 0.0015 min–1 of pure CeO2.The fact that they floated on water meant that CeO2/FACs composites were easily recovered from water by filtration after the reaction.The recycling test revealed that the composites were quite stable during the MB photocatalytic decolorization.The CeO2/ FACs catalyst was therefore promising for practical use in the degradation of pollutants or water cleanup.
基金China National Science and Technology Major Project(Grant No.2017-VI-0004-0075).
文摘The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters.