Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as...The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as a key event in the pathophysiology of AP. Mitochondrial dysfunction is closely related to calcium (Ca^(2+)) overload, intracellular adenosine triphosphate depletion, mitochondrial permeability transition pore openings, loss of mitochondrial membrane potential, mitophagy damage and inflammatory responses. Mitochondrial dysfunction is an early triggering event in the initiation and development of AP,and this organelle damage may precede the release of inflammatory cytokines, intracellular trypsin activation and vacuole formation of pancreatic acinar cells. This review provides further insight into the role of mitochondria in both physiological and pathophysiological aspects of AP, aiming to improve our understanding of the underlying mechanism which may lead to the development of therapeutic and preventive strategies for AP.展开更多
Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating...Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq.Methods:We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2(PRKAA1/2)knockdown(AKD)and control BeWo cells using the Seahorse real-time ATP rate test,then analyzed gene expression profiling by RNA-seq.Differentially expressed genes(DEG)were examined by Gene Ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment.Then protein-protein interactions(PPI)among mitochondria related genes were fur-ther analyzed using Metascape and Ingenuity Pathway Analysis(IPA)software.Results:Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells(CT),with a greater reduction of mitochondrial ATP production.A total of 1092 DEGs were identified,with 405 upregulated and 687 downregulated.GO analysis identified 60 genes associated with the term‘mitochon-drion’in the cellular component domain.PPI analysis identified three clusters of mito-chondria related genes,including aldo-keto reductase family 1 member B10 and B15(AKR1B10,AKR1B15),alanyl-tRNA synthetase 1(AARS1),mitochondrial ribosomal protein S6(MRPS6),mitochondrial calcium uniporter dominant negative subunit beta(MCUB)and dihydrolipoamide branched chain transacylase E2(DBT).Conclusions:In summary,this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells,and among them,three clusters of genes may po-tentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.展开更多
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge...Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.展开更多
Ischemic heart disease(IHD)is associated with high morbidity and mortality rates.Reperfusion therapy is the best treatment option for this condition.However,reperfusion can aggravate myocardial damage through a phenom...Ischemic heart disease(IHD)is associated with high morbidity and mortality rates.Reperfusion therapy is the best treatment option for this condition.However,reperfusion can aggravate myocardial damage through a phenomenon known as myocardial ischemia/reperfusion(I/R)injury,which has recently gained the attention of researchers.Several studies have shown that Chinese herbal medicines and their natural monomeric components exert therapeutic effects against I/R injury.This review outlines the current knowledge on the pathological mechanisms through which mitochondria participate in I/R injury,focusing on the issues related to energy metabolism,mitochondrial quality control disorders,oxidative stress,and calcium.The mechanisms by which mitochondria mediate cell death have also been discussed.To develop a resource for the prevention and management of clinical myocardial I/R damage,we compiled the most recent research on the effects of Chinese herbal remedies and their monomer components.展开更多
BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnose...BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.展开更多
Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals an...Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.展开更多
Metabolism-associated fatty liver disease(MAFLD)is a spectrum of chronic liver diseases caused by the abnormal accumulation of fat in the liver,which is becoming increasingly serious with the rise in obesity rates wor...Metabolism-associated fatty liver disease(MAFLD)is a spectrum of chronic liver diseases caused by the abnormal accumulation of fat in the liver,which is becoming increasingly serious with the rise in obesity rates worldwide.Studies have shown that the interaction between lipid droplets and mitochondria plays an important role in the development and progression of MAFLD.In particular,peridroplet mitochondria(PDM),as a unique class of mitochondrial subpopulations,play a key function in lipid metabolism through spatial proximity and functional synergy.The current study revealed the functional heterogeneity of PDM from different tissue sources by optimizing PDM isolation techniques(e.g.,differential centrifugation combined with protease-assisted method),which provided a theoretical basis for targeting lipid droplet-mitochondrial interactions to intervene in MAFLD.Therefore,this paper reviews the morphology,function and isolation methods of PDM,as well as the relationship between lipid droplet-mitochondrial interactions and MAFLD,with the aim of promoting the development of MAFLD intervention strategies based on lipid droplet-mitochondrial interactions.展开更多
Oncogenic viruses include both DNA and RNA viruses which contribute to cancer development by disrupting cellular regulation and interfering in the immune responses.These viruses do not directly cause cancer but instea...Oncogenic viruses include both DNA and RNA viruses which contribute to cancer development by disrupting cellular regulation and interfering in the immune responses.These viruses do not directly cause cancer but instead integrate their genetic material into the host genome thus,affecting cell cycle and tumor suppression.This deregulation also leads to impaired immune function and promotes tumor progression by disrupting the removal of infected cells.Generally,innate immunity consists of two important members,including mitochondria and cell deaths,which impact each other as well.Due to the close correlation between viruses,cell death pathways(apoptosis,necroptosis,and pyroptosis),and mitochondria(mitochondrial antiviral-signaling protein and reactive oxygen species generation),targeting these immune system representatives may offer therapeutic strategies to control the progression of oncogenic viral infections.Some previous studies have covered the association of oncogenic viruses with mitochondria and cell death pathways,respectively,but mitochondria and cell death interact with each other,separately,and this interaction may play a role in the progression of cancer induced by oncogenic viruses.Hence,the purpose of this review is to discuss the relationship between cell death,mitochondria,and viral oncogenesis,focusing on the most surveyed oncogenic viruses’mechanisms of action.展开更多
Objective:Lung cancer is the leading cause of cancer-related deaths worldwide.Chemotherapy is associated with side effects,such as damage to myeloid cells and a reduction in the number of immune cells in patients.In a...Objective:Lung cancer is the leading cause of cancer-related deaths worldwide.Chemotherapy is associated with side effects,such as damage to myeloid cells and a reduction in the number of immune cells in patients.In addition,tumor cells hijack the mitochondria of immune cells through tunnel nanotubes,thereby weakening immune ability.Methods:In this study the effects of direct mitochondria transplantation on cancer cell proliferation and chemotherapeutic sensitivity were determined,as well as anti-tumor immunity in in vitro and in vivo lung cancer models.Results:A combination of mitochondrial transplantation and cisplatin chemotherapy was shown for the first time to significantly improve immune infiltration of advanced non-small cell lung cancer(NSCLC)and overcome the shortcomings of cisplatin chemotherapy,including damage to myeloid cells and a reduction in the number of immune cells.Conclusions:The findings of the current study provide valuable recommendations for enhancing immune infiltration and augmenting anti-tumor efficacy during chemotherapy in advanced NSCLC.In addition,the findings support“mitochondrial transfer”as a novel paradigm in tumor treatment.展开更多
Background In perinatal dairy cows,ketosis is a prevalent metabolic disorder that lowers milk output and per-formance.Mitochondrial dysfunction and chronic inflammation in mammary tissue are linked to elevated blood k...Background In perinatal dairy cows,ketosis is a prevalent metabolic disorder that lowers milk output and per-formance.Mitochondrial dysfunction and chronic inflammation in mammary tissue are linked to elevated blood ketone levels,particularlyβ-hydroxybutyrate(BHB).Recent research has linked cytosolic mitochondrial DNA(mtDNA)with chronic aseptic inflammation by activating the cGAS-STING pathway during metabolic disorders,while autophagy activation effectively reverses this process.However,whether it is involved in mammary gland damage during ketosis is poorly understood.Therefore,this study aimed to explore the underlying mechanisms of mtDNA-induced inflammation under BHB stress and evaluate the potential therapeutic strategy of autophagy activation in mitigating this damage.Results Our study found an increased cytoplasmic mtDNA abundance in mammary gland tissues of dairy cows with ketosis and bovine mammary epithelial cell line(MAC-T)subjected to BHB stress.Further investigations revealed the activation of the cGAS-STING pathway and inflammatory response,indicated by elevated levels of cGAS and STING,along with increased phosphorylation levels of TBK1,P65,and IκB,and higher transcript levels of pro-inflammatory factors(IL-1B,IL-6,and TNF-α)in both in vivo and in vitro experiments.Notably,STING inhibition via si-STING transfection reversed BHB-induced inflammation.Additionally,autophagy activation appeared to protect against BHB stress by facilitating the removal of cytoplasmic mtDNA and preventing cGAS-STING pathway-mediated inflammation.Conclusions The findings illustrate that elevated BHB levels lead to the release of cytoplasmic mtDNA,which in turn activates the cGAS-STING pathway and triggers an inflammatory response in the mammary glands during hyper-ketonemia.Conversely,autophagy activation has been shown to alleviate this process by promoting cytoplasmic mtDNA degradation.展开更多
Mitochondria are not only the main source of cellular energy but also participate in regulating key physiological processes such as intracellular oxidative stress,signal transduction,and apoptosis,which are crucial fo...Mitochondria are not only the main source of cellular energy but also participate in regulating key physiological processes such as intracellular oxidative stress,signal transduction,and apoptosis,which are crucial for maintaining the structure and function of the skin.Increasing evidence suggests that abnormalities in mitochondrial structure,function,and regulation are closely related to the occurrence and development of skin photoaging.However,the critical role of mitochondria in skin photoaging has yet to be thoroughly explored and studied.In this review,we summarize the roles of mitochondria in the occurrence and development of skin photoaging,aiming to provide new ideas and methods for the prevention and treatment of skin photoaging.展开更多
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
基金supported by a grant from the Fund of Chengdu Medical College (CYZYB22-03)。
文摘The mechanism of cell damage during acute pancreatitis (AP) has not been fully elucidated, and there is still a lack of specific or effective treatments. Increasing evidence has implicated mitochondrial dysfunction as a key event in the pathophysiology of AP. Mitochondrial dysfunction is closely related to calcium (Ca^(2+)) overload, intracellular adenosine triphosphate depletion, mitochondrial permeability transition pore openings, loss of mitochondrial membrane potential, mitophagy damage and inflammatory responses. Mitochondrial dysfunction is an early triggering event in the initiation and development of AP,and this organelle damage may precede the release of inflammatory cytokines, intracellular trypsin activation and vacuole formation of pancreatic acinar cells. This review provides further insight into the role of mitochondria in both physiological and pathophysiological aspects of AP, aiming to improve our understanding of the underlying mechanism which may lead to the development of therapeutic and preventive strategies for AP.
基金Dean's Office Howard University College of Medicine,Grant/Award Number:Bridge Fund/Pilot Study AwardNational Center on Minority Health and Health Disparities,Grant/Award Number:RCMI/IDC Award U54MD007597National Institute of Child Health and Human Development,Grant/Award Number:R03HD095417 and R16HD116702。
文摘Background:How AMP activated protein kinase(AMPK)signaling regulates mito-chondrial functions and mitophagy in human trophoblast cells remains unclear.This study was designed to investigate potential players mediating the regulation of AMPK on mitochondrial functions and mitophagy by next generation RNA-seq.Methods:We compared ATP production in protein kinase AMP-activated catalytic subunit alpha 1/2(PRKAA1/2)knockdown(AKD)and control BeWo cells using the Seahorse real-time ATP rate test,then analyzed gene expression profiling by RNA-seq.Differentially expressed genes(DEG)were examined by Gene Ontology(GO)analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment.Then protein-protein interactions(PPI)among mitochondria related genes were fur-ther analyzed using Metascape and Ingenuity Pathway Analysis(IPA)software.Results:Both mitochondrial and glycolytic ATP production in AKD cells were lower than in the control BeWo cells(CT),with a greater reduction of mitochondrial ATP production.A total of 1092 DEGs were identified,with 405 upregulated and 687 downregulated.GO analysis identified 60 genes associated with the term‘mitochon-drion’in the cellular component domain.PPI analysis identified three clusters of mito-chondria related genes,including aldo-keto reductase family 1 member B10 and B15(AKR1B10,AKR1B15),alanyl-tRNA synthetase 1(AARS1),mitochondrial ribosomal protein S6(MRPS6),mitochondrial calcium uniporter dominant negative subunit beta(MCUB)and dihydrolipoamide branched chain transacylase E2(DBT).Conclusions:In summary,this study identified multiple mitochondria related genes regulated by AMPK in BeWo cells,and among them,three clusters of genes may po-tentially contribute to altered mitochondrial functions in response to reduced AMPK signaling.
基金support from the National Natural Science Foundation of China(Nos.22277056,21977052)the Distinguished Young Scholars of Jiangsu Province(No.BK20230006)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20230977,BK20231090)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.23KJB150020)the Jiangsu Excellent Postdoctoral Program(No.2022ZB758)。
文摘Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
基金supported by the National Natural Science Foundation of China(Grant No.:82074235)the Central Universities in China(Grant No.:2023-JYB-JBQN-041)。
文摘Ischemic heart disease(IHD)is associated with high morbidity and mortality rates.Reperfusion therapy is the best treatment option for this condition.However,reperfusion can aggravate myocardial damage through a phenomenon known as myocardial ischemia/reperfusion(I/R)injury,which has recently gained the attention of researchers.Several studies have shown that Chinese herbal medicines and their natural monomeric components exert therapeutic effects against I/R injury.This review outlines the current knowledge on the pathological mechanisms through which mitochondria participate in I/R injury,focusing on the issues related to energy metabolism,mitochondrial quality control disorders,oxidative stress,and calcium.The mechanisms by which mitochondria mediate cell death have also been discussed.To develop a resource for the prevention and management of clinical myocardial I/R damage,we compiled the most recent research on the effects of Chinese herbal remedies and their monomer components.
基金Supported by National Key Technology Research and Developmental Program of China,No.2022YFC2704400 and No.2022YFC2704405.
文摘BACKGROUND Mitochondrial genes are involved in tumor metabolism in ovarian cancer(OC)and affect immune cell infiltration and treatment responses.AIM To predict prognosis and immunotherapy response in patients diagnosed with OC using mitochondrial genes and neural networks.METHODS Prognosis,immunotherapy efficacy,and next-generation sequencing data of patients with OC were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus.Mitochondrial genes were sourced from the MitoCarta3.0 database.The discovery cohort for model construction was created from 70% of the patients,whereas the remaining 30% constituted the validation cohort.Using the expression of mitochondrial genes as the predictor variable and based on neural network algorithm,the overall survival time and immunotherapy efficacy(complete or partial response)of patients were predicted.RESULTS In total,375 patients with OC were included to construct the prognostic model,and 26 patients were included to construct the immune efficacy model.The average area under the receiver operating characteristic curve of the prognostic model was 0.7268[95% confidence interval(CI):0.7258-0.7278]in the discovery cohort and 0.6475(95%CI:0.6466-0.6484)in the validation cohort.The average area under the receiver operating characteristic curve of the immunotherapy efficacy model was 0.9444(95%CI:0.8333-1.0000)in the discovery cohort and 0.9167(95%CI:0.6667-1.0000)in the validation cohort.CONCLUSION The application of mitochondrial genes and neural networks has the potential to predict prognosis and immunotherapy response in patients with OC,providing valuable insights into personalized treatment strategies.
基金Supported by American Diabetes AssociationAmerican Heart Association+3 种基金NIH NIEHSNIH NIANIH NINDSand NIH ARRA.
文摘Diabetes mellitus(DM)is a debilitating disorder that impacts all systems of the body and has been increasing in prevalence throughout the globe.DM represents a significant clinical challenge to care for individuals and prevent the onset of chronic disability and ultimately death.Underlying cellular mechanisms for the onset and development of DM are multi-factorial in origin and involve pathways associated with the production of reactive oxygen species and the generation of oxidative stress as well as the dysfunction of mitochondrial cellular organelles,programmed cell death,and circadian rhythm impairments.These pathways can ultimately involve failure in the glymphatic pathway of the brain that is linked to circadian rhythms disorders during the loss of metabolic homeostasis.New studies incorporate a number of promising techniques to examine patients with metabolic disorders that can include machine learning and artificial intelligence pathways to potentially predict the onset of metabolic dysfunction.
基金supported by National Key Research and Development Program of China(No.2023YFF0724803)National Science Foundation of China(No.82274424)+1 种基金General Project of Traditional Chinese Medicine Joint Special Project of Yunnan Provincial Department of Science and Technology in 2024(No.202401AZ070001-038)Scientific Research Fund Project of Yunnan Provincial Education Department(No.2025Y0634,No.2025Y0627).
文摘Metabolism-associated fatty liver disease(MAFLD)is a spectrum of chronic liver diseases caused by the abnormal accumulation of fat in the liver,which is becoming increasingly serious with the rise in obesity rates worldwide.Studies have shown that the interaction between lipid droplets and mitochondria plays an important role in the development and progression of MAFLD.In particular,peridroplet mitochondria(PDM),as a unique class of mitochondrial subpopulations,play a key function in lipid metabolism through spatial proximity and functional synergy.The current study revealed the functional heterogeneity of PDM from different tissue sources by optimizing PDM isolation techniques(e.g.,differential centrifugation combined with protease-assisted method),which provided a theoretical basis for targeting lipid droplet-mitochondrial interactions to intervene in MAFLD.Therefore,this paper reviews the morphology,function and isolation methods of PDM,as well as the relationship between lipid droplet-mitochondrial interactions and MAFLD,with the aim of promoting the development of MAFLD intervention strategies based on lipid droplet-mitochondrial interactions.
文摘Oncogenic viruses include both DNA and RNA viruses which contribute to cancer development by disrupting cellular regulation and interfering in the immune responses.These viruses do not directly cause cancer but instead integrate their genetic material into the host genome thus,affecting cell cycle and tumor suppression.This deregulation also leads to impaired immune function and promotes tumor progression by disrupting the removal of infected cells.Generally,innate immunity consists of two important members,including mitochondria and cell deaths,which impact each other as well.Due to the close correlation between viruses,cell death pathways(apoptosis,necroptosis,and pyroptosis),and mitochondria(mitochondrial antiviral-signaling protein and reactive oxygen species generation),targeting these immune system representatives may offer therapeutic strategies to control the progression of oncogenic viral infections.Some previous studies have covered the association of oncogenic viruses with mitochondria and cell death pathways,respectively,but mitochondria and cell death interact with each other,separately,and this interaction may play a role in the progression of cancer induced by oncogenic viruses.Hence,the purpose of this review is to discuss the relationship between cell death,mitochondria,and viral oncogenesis,focusing on the most surveyed oncogenic viruses’mechanisms of action.
基金supported by the National Natural Science Foundation of China(Grant No.81922030)the International Cooperation Project of the Belt and Road(Grant No.20400750600)+1 种基金the Construction Project of Shanghai TCMintegrated Innovative Flagship Hospital[Grant No.ZY(2021-2023)-0205-05,ZXXT-202203]the Shanghai Municipal Commission of Health and Family Plan(Grant No.201840056).
文摘Objective:Lung cancer is the leading cause of cancer-related deaths worldwide.Chemotherapy is associated with side effects,such as damage to myeloid cells and a reduction in the number of immune cells in patients.In addition,tumor cells hijack the mitochondria of immune cells through tunnel nanotubes,thereby weakening immune ability.Methods:In this study the effects of direct mitochondria transplantation on cancer cell proliferation and chemotherapeutic sensitivity were determined,as well as anti-tumor immunity in in vitro and in vivo lung cancer models.Results:A combination of mitochondrial transplantation and cisplatin chemotherapy was shown for the first time to significantly improve immune infiltration of advanced non-small cell lung cancer(NSCLC)and overcome the shortcomings of cisplatin chemotherapy,including damage to myeloid cells and a reduction in the number of immune cells.Conclusions:The findings of the current study provide valuable recommendations for enhancing immune infiltration and augmenting anti-tumor efficacy during chemotherapy in advanced NSCLC.In addition,the findings support“mitochondrial transfer”as a novel paradigm in tumor treatment.
基金supported by the National Natural Science Foundation of China(32125038)the National Key R&B Program of China(2023YFD1801100)China Agriculture Research System(CARS-36).
文摘Background In perinatal dairy cows,ketosis is a prevalent metabolic disorder that lowers milk output and per-formance.Mitochondrial dysfunction and chronic inflammation in mammary tissue are linked to elevated blood ketone levels,particularlyβ-hydroxybutyrate(BHB).Recent research has linked cytosolic mitochondrial DNA(mtDNA)with chronic aseptic inflammation by activating the cGAS-STING pathway during metabolic disorders,while autophagy activation effectively reverses this process.However,whether it is involved in mammary gland damage during ketosis is poorly understood.Therefore,this study aimed to explore the underlying mechanisms of mtDNA-induced inflammation under BHB stress and evaluate the potential therapeutic strategy of autophagy activation in mitigating this damage.Results Our study found an increased cytoplasmic mtDNA abundance in mammary gland tissues of dairy cows with ketosis and bovine mammary epithelial cell line(MAC-T)subjected to BHB stress.Further investigations revealed the activation of the cGAS-STING pathway and inflammatory response,indicated by elevated levels of cGAS and STING,along with increased phosphorylation levels of TBK1,P65,and IκB,and higher transcript levels of pro-inflammatory factors(IL-1B,IL-6,and TNF-α)in both in vivo and in vitro experiments.Notably,STING inhibition via si-STING transfection reversed BHB-induced inflammation.Additionally,autophagy activation appeared to protect against BHB stress by facilitating the removal of cytoplasmic mtDNA and preventing cGAS-STING pathway-mediated inflammation.Conclusions The findings illustrate that elevated BHB levels lead to the release of cytoplasmic mtDNA,which in turn activates the cGAS-STING pathway and triggers an inflammatory response in the mammary glands during hyper-ketonemia.Conversely,autophagy activation has been shown to alleviate this process by promoting cytoplasmic mtDNA degradation.
文摘Mitochondria are not only the main source of cellular energy but also participate in regulating key physiological processes such as intracellular oxidative stress,signal transduction,and apoptosis,which are crucial for maintaining the structure and function of the skin.Increasing evidence suggests that abnormalities in mitochondrial structure,function,and regulation are closely related to the occurrence and development of skin photoaging.However,the critical role of mitochondria in skin photoaging has yet to be thoroughly explored and studied.In this review,we summarize the roles of mitochondria in the occurrence and development of skin photoaging,aiming to provide new ideas and methods for the prevention and treatment of skin photoaging.