In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem i...In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.展开更多
In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,...In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.展开更多
Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simpli...Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.展开更多
In this paper,we investigate a Recofigurable Intelligent Surface(RIS)-assisted Free-Space Optics-Radio Frequency(FSO-RF)mixed dual-hop communication system for Unmanned Aerial Vehicles(UAVs).In the first hop,a source ...In this paper,we investigate a Recofigurable Intelligent Surface(RIS)-assisted Free-Space Optics-Radio Frequency(FSO-RF)mixed dual-hop communication system for Unmanned Aerial Vehicles(UAVs).In the first hop,a source UAV transmits data to a relay UAV using the FSO technique.In the second hop,the relay UAV forwards data to a destination Mobile Station(MS)via an RF channel,with the RIS enhancing coverage and performance.The relay UAV operates in a Decode-and-Forward(DF)mode.As the main contribution,we provide a mathematical performance analysis of the RIS-assisted FSO-RF mixed dual-hop UAV system,evaluating outage probability,Bit-Error Rate(BER),and average capacity.The analysis accounts for factors such as atmospheric attenuation,turbulence,geometric losses,and link interruptions caused by UAV hovering behaviors.To the best of our knowledge,this is the first theoretical investigation of RIS-assisted FSO-RF mixed dual-hop UAV communication systems.Our analytical results show strong agreement with Monte Carlo simulation outcomes.Furthermore,simulation results demonstrate that RIS significantly enhances the performance of UAV-aided mixed RF/FSO systems,although performance saturation is observed due to uncertainties stemming from UAV hovering behavior.展开更多
Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during a...Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.展开更多
Non-vacuum storage condition has a great impact on the explosion characteristics of aluminum powders. In this paper, vacuum-packed flake and globular aluminum powders stored in a dryer after opening the vacuum package...Non-vacuum storage condition has a great impact on the explosion characteristics of aluminum powders. In this paper, vacuum-packed flake and globular aluminum powders stored in a dryer after opening the vacuum package are selected as the experimental samples, and a 20 L spherical explosion device is chosen to test the minimum explosible concentration (MEC) values of aluminum dusts under different storage time. The results show that the MEC values of two types of unoxidized aluminum powders are 30 g/m^3. The MEC values of flake and globular aluminum powders firstly go up with the increase of storage time in the dryer and then reach the maximum values of 50 g/m^3 and 60 g/m^3 at respective storage time until finally they stabilize gradually. The main reason is that the oxidation rate is faster owing to the bigger specific surface area of globular aluminum powders. Hence, the storage time has more significant effect on the MEC of globular aluminum powder than that of flake aluminum powder. After a period of time, the outer surface is oxidized to generate a layer of film, which prevents the further oxidation of aluminum powder, resulting in the temporary stability of MEC.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of NUAA(No.kfjj20200414)Natural Science Foundation of Jiangsu Province in China(No.BK20181289).
文摘In this paper,we optimize the spectrum efficiency(SE)of uplink massive multiple-input multiple-output(MIMO)system with imperfect channel state information(CSI)over Rayleigh fading channel.The SE optimization problem is formulated under the constraints of maximum power and minimum rate of each user.Then,we develop a near-optimal power allocation(PA)scheme by using the successive convex approximation(SCA)method,Lagrange multiplier method,and block coordinate descent(BCD)method,and it can obtain almost the same SE as the benchmark scheme with lower complexity.Since this scheme needs three-layer iteration,a suboptimal PA scheme is developed to further reduce the complexity,where the characteristic of massive MIMO(i.e.,numerous receive antennas)is utilized for convex reformulation,and the rate constraint is converted to linear constraints.This suboptimal scheme only needs single-layer iteration,thus has lower complexity than the near-optimal scheme.Finally,we joint design the pilot power and data power to further improve the performance,and propose an two-stage algorithm to obtain joint PA.Simulation results verify the effectiveness of the proposed schemes,and superior SE performance is achieved.
基金Project(10472134) supported by the National Natural Science Foundation of China
文摘In order to investigate the relationship between bar diameter and loading rate of the split Hopkinson pressure bar(SHPB) setup under the failure of rock specimen and realize the medium strain rate loading of specimen,new SHPB setups with different elastic bar's diameters of 22,36,50 and 75 mm were constructed.The tests were carried out on these setups at different loading rates,and the specimens had the same diameter of elastic bars and same ratio of length to diameter.The test results show that the larger the elastic bar's diameter is,the less the loading rate is needed to cause specimen failure,they show good power relationship,and that under the same strain rate loading,specimens are broken more seriously with larger diameter SHPB setup than with smaller one.
文摘Unit stream power is the most important and dominant parameter for the determination of transport rate of sand,gravel,and hyper-concentrated sediment with wash load.Minimum energy dissipation rate theory,or its simplified minimum unit stream power and minimum stream power theories,can provide engineers the needed theoretical basis for river morphology and river engineering studies.The Generalized Sediment Transport model for Alluvial River Simulation computer mode series have been developed based on the above theories.The computer model series have been successfully applied in many countries.Examples will be used to illustrate the applications of the computer models to solving a wide range of river morphology and river engineering problems.
基金supported in part by the National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)under Grant NRF-2022R1I1A3073740in part by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2024-RS-2024-00436406)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)+1 种基金in part by the Institute for Information and Communications Technology Promotion(IITP)Grant funded by the Korea Government(MSIP,Development of Cube Satellites Based on Core Technologies in Low Earth Orbit Satellite Communications)under Grant RS-2024-00396992in part by the Korea Research Institute for Defense Technology planning and advancement(KRIT)grant,funded by the Korea government(DAPA(Defense Acquisition Program Administration))(21-106-A00-007,Space-Layer Intelligent Communication Network Laboratory,2022).
文摘In this paper,we investigate a Recofigurable Intelligent Surface(RIS)-assisted Free-Space Optics-Radio Frequency(FSO-RF)mixed dual-hop communication system for Unmanned Aerial Vehicles(UAVs).In the first hop,a source UAV transmits data to a relay UAV using the FSO technique.In the second hop,the relay UAV forwards data to a destination Mobile Station(MS)via an RF channel,with the RIS enhancing coverage and performance.The relay UAV operates in a Decode-and-Forward(DF)mode.As the main contribution,we provide a mathematical performance analysis of the RIS-assisted FSO-RF mixed dual-hop UAV system,evaluating outage probability,Bit-Error Rate(BER),and average capacity.The analysis accounts for factors such as atmospheric attenuation,turbulence,geometric losses,and link interruptions caused by UAV hovering behaviors.To the best of our knowledge,this is the first theoretical investigation of RIS-assisted FSO-RF mixed dual-hop UAV communication systems.Our analytical results show strong agreement with Monte Carlo simulation outcomes.Furthermore,simulation results demonstrate that RIS significantly enhances the performance of UAV-aided mixed RF/FSO systems,although performance saturation is observed due to uncertainties stemming from UAV hovering behavior.
文摘Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper, the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.
文摘Non-vacuum storage condition has a great impact on the explosion characteristics of aluminum powders. In this paper, vacuum-packed flake and globular aluminum powders stored in a dryer after opening the vacuum package are selected as the experimental samples, and a 20 L spherical explosion device is chosen to test the minimum explosible concentration (MEC) values of aluminum dusts under different storage time. The results show that the MEC values of two types of unoxidized aluminum powders are 30 g/m^3. The MEC values of flake and globular aluminum powders firstly go up with the increase of storage time in the dryer and then reach the maximum values of 50 g/m^3 and 60 g/m^3 at respective storage time until finally they stabilize gradually. The main reason is that the oxidation rate is faster owing to the bigger specific surface area of globular aluminum powders. Hence, the storage time has more significant effect on the MEC of globular aluminum powder than that of flake aluminum powder. After a period of time, the outer surface is oxidized to generate a layer of film, which prevents the further oxidation of aluminum powder, resulting in the temporary stability of MEC.