AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylth...AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry,DAPI staining assay and caspase-3 activity assay.Quantitative reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the expression of microRNA-124(miR-124) in response to paeoniflorin.The expression of phosphatidylinositol 3-kinase(PI3K),protein kinase B(Akt), phospho-Akt(p-Akt) and phospho-signal transducer and activator of transcription3(p-STAT3) were also measured by quantitative RTPCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3 K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3 K agonist(IGF-1, 1μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.展开更多
microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesen...microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesen- chymal stem cells, neural stem cells and neurons, miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We con- structed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers [3-III tu- bulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re- sults suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.展开更多
OBJECTIVE Although it is generally believed that nicotine accounts for the beneficial effect of smoking on ulcerative colitis,the underlying mechanisms remain not well-understood.Our previous finding that nicotine inh...OBJECTIVE Although it is generally believed that nicotine accounts for the beneficial effect of smoking on ulcerative colitis,the underlying mechanisms remain not well-understood.Our previous finding that nicotine inhibits inflammatory responses through inducing miRNA-124 prompted us to ask whether the miRNA is involved in the protective action of nicotine on UC.METHODS Mi R-124 expression in colon tissues and cells was determined by q-PCR and in situ hybridization.The effect of miR-124 on protective role of nicotine in ulcerative colitis was evaluated in DSS-treated mice and IL-6-treated Caco-2 colon epithelial cells.Expression of p-STAT3/STAT3 was detected by immunohistochemistry and Western blot analysis.RESULTS miR-124 expression is upregulated in colon tissues from patients and DSS-induced colitis.Nicotine treatment further elevated miR-124 level in colon tissues of the mice,in infiltrated lymphocytes and epithelial cells,and augmented miR-124 expression in lymphocytes isolated from human ulcerative colon tissues.Administration of nicotine also reduced weight loss,improved DAI and decreased HE score in DSS-induced colitis.Moreover,knockdown of miR-124 in vivo significantly diminished the beneficial effect of nicotine,and in vitro on IL-6-treated Caco-2 colon epithelial cells.Further analysis indicated that nicotine inhibited STAT3 activation in vivo and in IL-6-treated Caco-2 colon epithelial cells and Jurkat human T lymphocytes,in whichmiR-124 knockdown led to increased activation of STAT3.CONCLUSION These data indicated that nicotine exerts its protective action in UC through inducing miR-124 and its effect on STAT3,suggesting that the miR-124/STAT3 system is a potential target for the therapeutic intervention of UC.展开更多
基金Supported by National Natural Science Foundation of China,No.81372553
文摘AIM: To examine the potential anti-tumor activity of paeoniflorin in the human gastric carcinoma cell line MGC-803.METHODS: Cell viability and cytotoxic effects in MGC-803 cells were analyzed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay, respectively. Cell apoptosis of MGC-803 cells was measured using flow cytometry,DAPI staining assay and caspase-3 activity assay.Quantitative reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the expression of microRNA-124(miR-124) in response to paeoniflorin.The expression of phosphatidylinositol 3-kinase(PI3K),protein kinase B(Akt), phospho-Akt(p-Akt) and phospho-signal transducer and activator of transcription3(p-STAT3) were also measured by quantitative RTPCR and Western blot analysis in normal, miR-124 and anti-miR-124 over-expressing MGC-803 cells, treated with paeoniflorin.RESULTS: Paeoniflorin was found to inhibit MGC-803 cell viability in a dose-dependent manner. Paeoniflorin treatment was associated with the induction of apoptosis and caspase-3 activity in MGC-803 cells. Paeoniflorin treatment significantly increased miR-124 levels and inhibited the expression of PI3 K, Akt, p-Akt and p-STAT3 in MGC-803 cells. Interestingly, the over-expression of miR-124 inhibits PI3K/Akt and phospho-STAT3 expressions in MGC-803 cells. PI3 K agonist(IGF-1, 1μg/10 μL) or over-expression of STAT3 reversed the effect of paeoniflorin on the proliferation of MGC-803 cells. Over-expression of anti-miR-124 in MGC-803 cells reversed paeoniflorin-induced up-regulation.CONCLUSION: In summary, the in vitro data suggest that paeoniflorin is a potential novel therapeutic agent against gastric carcinoma, which inhibits cell viability and induces apoptosis through the up-regulation of miR-124 and suppression of PI3K/Akt and STAT3 signaling.
基金supported by the National Natural Science Foundation of China,No.81070971
文摘microRNAs (miRNAs) play an important regulatory role in the self-renewal and differentiation of stem cells. In this study, we examined the effects of miRNA-124 (miR-124) overexpression in bone marrow-derived mesenchymal stem cells. In particular, we focused on the effect of overexpression on the differentiation of bone marrow-derived mesenchymal stem cells into neurons. First, we used GeneChip technology to analyze the expression of miRNAs in bone marrow-derived mesen- chymal stem cells, neural stem cells and neurons, miR-124 expression was substantially reduced in bone marrow-derived mesenchymal stem cells compared with the other cell types. We con- structed a lentiviral vector overexpressing miR-124 and transfected it into bone marrow-derived mesenchymal stem cells. Intracellular expression levels of the neuronal early markers [3-III tu- bulin and microtubule-associated protein-2 were significantly increased, and apoptosis induced by oxygen and glucose deprivation was reduced in transfected cells. After miR-124-transfected bone marrow-derived mesenchymal stem cells were transplanted into the injured rat spinal cord, a large number of cells positive for the neuronal marker neurofilament-200 were observed in the transplanted region. The Basso-Beattie-Bresnahan locomotion scores showed that the motor function of the hind limb of rats with spinal cord injury was substantially improved. These re- sults suggest that miR-124 plays an important role in the differentiation of bone marrow-derived mesenchymal stem cells into neurons. Our findings should facilitate the development of novel strategies for enhancing the therapeutic efficacy of bone marrow-derived mesenchymal stem cell transplantation for spinal cord injury.
基金supported by National Natural Science Foundation of China(81273606,81473259 to XL,81603116 to YS)National Science and Technology Major Project(2014ZX09J14103-08C to XL)
文摘OBJECTIVE Although it is generally believed that nicotine accounts for the beneficial effect of smoking on ulcerative colitis,the underlying mechanisms remain not well-understood.Our previous finding that nicotine inhibits inflammatory responses through inducing miRNA-124 prompted us to ask whether the miRNA is involved in the protective action of nicotine on UC.METHODS Mi R-124 expression in colon tissues and cells was determined by q-PCR and in situ hybridization.The effect of miR-124 on protective role of nicotine in ulcerative colitis was evaluated in DSS-treated mice and IL-6-treated Caco-2 colon epithelial cells.Expression of p-STAT3/STAT3 was detected by immunohistochemistry and Western blot analysis.RESULTS miR-124 expression is upregulated in colon tissues from patients and DSS-induced colitis.Nicotine treatment further elevated miR-124 level in colon tissues of the mice,in infiltrated lymphocytes and epithelial cells,and augmented miR-124 expression in lymphocytes isolated from human ulcerative colon tissues.Administration of nicotine also reduced weight loss,improved DAI and decreased HE score in DSS-induced colitis.Moreover,knockdown of miR-124 in vivo significantly diminished the beneficial effect of nicotine,and in vitro on IL-6-treated Caco-2 colon epithelial cells.Further analysis indicated that nicotine inhibited STAT3 activation in vivo and in IL-6-treated Caco-2 colon epithelial cells and Jurkat human T lymphocytes,in whichmiR-124 knockdown led to increased activation of STAT3.CONCLUSION These data indicated that nicotine exerts its protective action in UC through inducing miR-124 and its effect on STAT3,suggesting that the miR-124/STAT3 system is a potential target for the therapeutic intervention of UC.