Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates...Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.展开更多
TC4 micro-arc oxidation(MAO)coatings were prepared by adding SiO_(2) nanoparticles or sodium silicate to the sodium meta-aluminate-based electrolyte.The effect of additives was investigated by XRD,SEM,EDS,electrochemi...TC4 micro-arc oxidation(MAO)coatings were prepared by adding SiO_(2) nanoparticles or sodium silicate to the sodium meta-aluminate-based electrolyte.The effect of additives was investigated by XRD,SEM,EDS,electrochemical and wear tests.The results show that additives can considerably accelerate the formation of MAO coatings.The coatings are mostly composed of rutile and anatase TiO_(2),α-Al_(2)O_(3),γ-Al_(2)O_(3),Al_(2)TiO_(5) and SiO_(2).Sodium silicate and SiO_(2) nanoparticles added to the coating can effectively reduce the size of micropores and increase its thickness,whereas SiO_(2) nanoparticles with superior physical properties can be directly deposited at the discharge channel,significantly increasing the coating's resistance to wear and corrosion.The coating with SiO_(2) nanoparticles exhibits the best overall performance,with the lowest corrosion rate and average friction coefficient of 4.095×10^(-5)mm/a and 0.30,respectively.展开更多
Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports t...Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports the successful hydrothermal preparation of a MgLiAlCe-LDHs@GO flm on a MAO-coated Mg–Li alloy following Ce confnement.The graphene oxide(GO)sheet increased the difusion path of the corrosive media,and the addition of rare-earth cerium ions(Ce^(3+))endowed the flm with a certain self-healing ability,which signifcantly improved the corrosion resistance of the flm,and the corrosion current density(icorr)reached 3.27×10^(−8)A cm^(−2).The synergistic action of GO and Ce^(3+)can achieve long-term corrosion protection for the substrate.The corrosion resistance mechanism of MgLiAlCe-LDHs@GO flm was discussed by the scanning vibration electrode technique(SVET).展开更多
Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient cat...Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.展开更多
Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,...Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed.展开更多
Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capac...Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.展开更多
Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising a...Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.展开更多
Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the ...Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.展开更多
This research systematically examined the degradation,antibacterial effects,and biocompatibility of micro-arc oxidation(MAO)coatings with nano CuO and ZnO on extruded Mg alloys.Both copper(Cu)and Zinc(Zn)possess antib...This research systematically examined the degradation,antibacterial effects,and biocompatibility of micro-arc oxidation(MAO)coatings with nano CuO and ZnO on extruded Mg alloys.Both copper(Cu)and Zinc(Zn)possess antibacterial properties.The findings demonstrated that adding ZnO will appreciably reduce the degradation rate of MAO-coating alloy due to the self-sealing micro holes.CuO+MAO coating exhibited excellent antibacterial performance,with an antibacterial rate of over 90%within 6 h co-cultured with Staphylococcus aureus.Similarly,the antibacterial rate of ZnO+MAO coating reached 90%after 12 h co-culture.Cytotoxicity test using MG63 cell indicated that the incorporation of CuO and ZnO did not notably affect the cell viability rate of the coating.Moreover,after 14 days of culture,the CuO+MAO and ZnO+MAO coated samples exhibited higher alkaline phosphatase(ALP)activity than the MAO-coated and uncoated samples,suggesting favorable osteogenic properties.展开更多
The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the ...The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte...Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.展开更多
Expanding the cutoff voltage of layered oxide cathodes for sodium-ion batteries(SIBs)is crucial for overcoming their existing energy density limitations.However,cationic/anodic redox-triggered multiple phase transitio...Expanding the cutoff voltage of layered oxide cathodes for sodium-ion batteries(SIBs)is crucial for overcoming their existing energy density limitations.However,cationic/anodic redox-triggered multiple phase transitions and unfavorable interfacial side reactions accelerate capacity and voltage decay.Herein,we present a straightforward melting plus reactive wetting strategy using H_(3)BO_(3)for surface modification of O_(3)-type Na_(0.9)Cu_(0.12)Ni_(0.33)Mn_(0.4)Ti_(0.15)O_(2)(CNMT).The transformation of H_(3)BO_(3)from solid to liquid under mild heating facilitates the uniform dispersion and complete surface coverage of CNMT particles.By neutralizing the residual alkali and extracting Na^(+)from the CNMT lattice,H_(3)BO_(3)forms a multifunctional Na_(2)B_(2)O_(5)-dominated layer on the CNMT surface.This Na_(x)B_(y)O_(z)(NBO)layer plays a positive role in providing low-barrier Na^(+)transport channels,suppressing phase transitions,and minimizing the generation of O_(2)/CO_(2)gases and resistive byproducts.As a result,at a charge cutoff voltage of 4.5 V,the NBO-coated CNMT delivers a high discharge capacity of 149,1 mAh g^(-1)at 10 mA g^(-1)and exhibits excellent cycling stability at 100 mA g^(-1)over 200 cycles with a higher capacity retention than that of pristine CNMT(86,4%vs,62.1%).This study highlights the effectiveness of surface modification using lowmelting-point solid acids,with potential applications for other layered oxide cathode materials to achieve stable high-voltage cycling.This proposed strategy opens new avenues for the construction of highquality coatings for high-voltage layered oxide cathodes in SIBs.展开更多
Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc...Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc oxidation.Thecoatings exhibited good corrosion resistance and antimicrobial properties.X-ray diffraction(XRD),scanning electronmicroscopy(SEM),and 3D laser confocal were used to characterize the coatings.The properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were analyzed,including microstructure,surface roughness,corrosion resistance,andantimicrobial properties.The electrochemical results showed that the coatings prepared by microarc oxidation hadenhanced corrosion resistance compared to the substrate.The antibacterial properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coating against Pseudomonas aeruginosa were evaluated by fluorescence microscopy and plate counting.The antibacterial rate of TiO_(2)/Cu_(2)O@CeO_(2)coating was up to 99.70%.In summary,the TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings prepared by microarc oxidation have a potential application background in the field of marine corrosionprotection and biofouling.展开更多
Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous Si...Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.展开更多
Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability cau...Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.展开更多
The O3-type layered cathode with high Ni content has attracted much attention because of its high capacity and simple synthesis process.However,surface side reaction and O3-P3 phase transitions would occur during Na+i...The O3-type layered cathode with high Ni content has attracted much attention because of its high capacity and simple synthesis process.However,surface side reaction and O3-P3 phase transitions would occur during Na+insertion/extraction,resulting in unsatisfying electrochemical performance.Herein,O3-Na[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_(2)(NNCM622)cathode is modified by a NaTiOx coating layer in a wet chemistry method,which reduces the parasitic reaction and facilitates Na+migration.Simultaneously,the partially doped Ti improves structural stability by restraining the irreversible multiple-phase transition.As a result,the modified NNCM622 cathode obtains a high specific capacity of 143.4 mAh g^(−1)and an improved capacity retention of 69%after 300 cycles.Our work offers new prospects for stabilizing the NNCM622 cathode with a feasible coating strategy.展开更多
O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics....O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics.Herein,we present a sodium-deficient high-entropy layered oxide cathode(Na_(0.85)Ni_(0.3)Mn_(0.3)Fe_(0.1)Co_(0.15)Ti_(0.1)Cu_(0.05)B_(0.02)O_(2),denoted as Na0.85-HEO),combining sodium content optimization and high-entropy composition design.Incorporating six transition metals and light element boron creates a unique high-entropy configuration,effectively mitigating local lattice distortion and internal strain through chemical disorder effects,thereby enabling highly reversible phase transitions(O3-P3-O3)and smaller volume change(0.6A^(3))during the initial cycle.The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm,facilitating the Na^(+)diffusion kinetics.Moreover,this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of(O_(2))^(n-),thereby suppressing gas release during the cycling process.The resultant cathode demonstrates exceptional cyclability(80% capacity retention after 400 cycles at 100 mA g^(-1)in a full cell),and remarkable low-temperature performance(108.6 mAh g^(-1)at -40℃).This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications.展开更多
In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-ba...In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-based layered oxide cathodes with ARRs exhibit outstanding specific capacity and energy density,making them promising for SIB applications.However,these cathodes still face some scientific challenges that need to be addressed.This review systematically summarizes the composition,structure,oxygen-redox mechanism,and performance of various types of Mn-based cathodes with ARRs,as well as the main scientific challenges they face,including sluggish ion diffusion,cationic migration,O_(2) release,and element dissolution.Currently,to resolve these challenges,efforts mainly focus on six aspects:synthesis methods,structural design,doped modification,electrolyte design,and surface engineering.Finally,this review provides new insights for future direction,encompassing both fundamental research,such as novel cathode types,interface optimization,and interdisciplinary research,and considerations from an industrialization perspective,including scalability,stability,and safety.展开更多
Sodium-ion batteries(SIBs)employ P2-type layered transition metal oxides as promising cathode materials,primarily due to their abundant natural reserves and environmentally friendly characteristics.However,structural ...Sodium-ion batteries(SIBs)employ P2-type layered transition metal oxides as promising cathode materials,primarily due to their abundant natural reserves and environmentally friendly characteristics.However,structural instability and complex phase transitions during electrochemical cycling pose significant challenges to their practical applications.Employing cation substitution serves as a straightforward yet effective strategy for stabilizing the structure and improving the kinetics of the active material.In this study,we introduce a Ni-rich honeycomb-layered Na_(2+x)Ni_(2)TeO_(6)(NNTO)cathode material with variable sodium content(x=0,0.03,0.05,0.10).Physicochemical characterizations reveal that excess sodium content at the atomic scale modifies the surface and suppresses phase transitions,while preserving the crystal structure.This results in enhanced cyclic performance and improved electrochemical kinetics at room temperature.Furthermore,we investigate the performance of the NNTO cathode material containing 10%excess sodium at a relatively high temperature of 60℃,where it exhibits 71.6%capacity retention compared to 60%for the pristine.Overall,our results confirm that a preconstructed surface layer(induced by excess sodium)effectively safeguards the Ni-based cathode material from surface degradation and phase transitions during the electrochemical processes,thus exhibiting superior capacity retention relative to the pristine NNTO cathode.This study of the correlation between structure and performance can potentially be applied to the commercialization of SIBs.展开更多
基金supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX23_3032).
文摘Nano-zinc oxides(ZnO)demonstrate remarkable antibacterial properties.To further enhance the corrosion resistance and antibacterial efficiency of magnesium alloy micro-arc oxidation(MAO)coatings,this study investigates the preparation of ZnO-containing micro-arc oxidation coatings with dual functionality by incorporating nano-ZnO into MAO electrolyte.The influence of varying ZnO concentrations on the microstructure,corrosion resistance,and antibacterial properties of the coating was examined through microstructure analysis,immersion tests,electrochemical experiments,and antibacterial assays.The findings revealed that the addition of nano-ZnO significantly enhanced the corrosion resistance of the MAO-coated alloy.Specifically,when the ZnO concentration in the electrolyte was 5 g/L,the corrosion rate was more than ten times lower compared to the MAO coatings without ZnO.Moreover,the antibacterial efficacy of ZnO+MAO coating,prepared with a ZnO concentration of 5 g/L,surpassed 95%after 24 h of co-culturing with Staphylococcus aureus(S.aureus).The nano-ZnO+MAO-coated alloy exhibited exceptional degradation resistance,corrosion resistance,and antibacterial effectiveness.
基金Sichuan Science and Technology Program(2022YFSY0018)。
文摘TC4 micro-arc oxidation(MAO)coatings were prepared by adding SiO_(2) nanoparticles or sodium silicate to the sodium meta-aluminate-based electrolyte.The effect of additives was investigated by XRD,SEM,EDS,electrochemical and wear tests.The results show that additives can considerably accelerate the formation of MAO coatings.The coatings are mostly composed of rutile and anatase TiO_(2),α-Al_(2)O_(3),γ-Al_(2)O_(3),Al_(2)TiO_(5) and SiO_(2).Sodium silicate and SiO_(2) nanoparticles added to the coating can effectively reduce the size of micropores and increase its thickness,whereas SiO_(2) nanoparticles with superior physical properties can be directly deposited at the discharge channel,significantly increasing the coating's resistance to wear and corrosion.The coating with SiO_(2) nanoparticles exhibits the best overall performance,with the lowest corrosion rate and average friction coefficient of 4.095×10^(-5)mm/a and 0.30,respectively.
基金supported by the National Key R&D Program of China(2021YFB3701100)the National Natural Science Foundation of China(52171101)the Fundamental Research Funds for the Central Universities(2024IAIS-QN009).
文摘Micro-arc oxidation(MAO)flm can only provide common mechanical protection for magnesium(Mg)–lithium(Li)alloys.These alloys are susceptible to severe localized corrosion,if the MAO flm is disrupted.This work reports the successful hydrothermal preparation of a MgLiAlCe-LDHs@GO flm on a MAO-coated Mg–Li alloy following Ce confnement.The graphene oxide(GO)sheet increased the difusion path of the corrosive media,and the addition of rare-earth cerium ions(Ce^(3+))endowed the flm with a certain self-healing ability,which signifcantly improved the corrosion resistance of the flm,and the corrosion current density(icorr)reached 3.27×10^(−8)A cm^(−2).The synergistic action of GO and Ce^(3+)can achieve long-term corrosion protection for the substrate.The corrosion resistance mechanism of MgLiAlCe-LDHs@GO flm was discussed by the scanning vibration electrode technique(SVET).
基金National Natural Science Foundation of China,Grant/Award Number:22179029Fundamental Research Funds for the Central Universities,Grant/Award Number:buctrc202324+2 种基金Young Elite Scientists Sponsorship Program by BAST,Grant/Award Number:BYESS2023093Ministero dell'Istruzione,dell'Universitàe della Ricerca,Grant/Award Number:2022FNL89YKempestiftelserna。
文摘Selective oxidation of amines to imines through electrocatalysis is an attractive and efficient way for the chemical industry to produce nitrile compounds,but it is limited by the difficulty of designing efficient catalysts and lack of understanding the mechanism of catalysis.Herein,we demonstrate a novel strategy by generation of oxyhydroxide layers on two-dimensional iron-doped layered nickel phosphorus trisulfides(Ni1-xFexPS_(3))during the oxidation of benzylamine(BA).In-depth structural and surface chemical characterizations during the electrocatalytic process combined with theoretical calculations reveal that Ni(1-x)FexPS_(3) undergoes surface reconstruction under alkaline conditions to form the metal oxyhydroxide/phosphorus trichalcogenide(NiFeOOH/Ni1-xFexPS_(3))heterostructure.Interestingly,the generated heterointerface facilitates BA oxidation with a low onset potential of 1.39 V and Faradaic efficiency of 53%for benzonitrile(BN)synthesis.Theoretical calculations further indicate that the as-formed NiFeOOH/Ni1-xFexPS_(3) heterostructure could offer optimum free energy for BA adsorption and BN desorption,resulting in promising BN synthesis.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030006).
文摘Magnesium matrix composites with both high strength and ductility have been achieved by introducing pure Ti particles.However,the properties of the surfaces of the composites need to be improved by surface technology,such as micro-arc oxidation(MAO).In this study,we investigated the influence of the Ti-reinforcement phase on coating growth and evolution by subjecting both AZ91 alloy and AZ91/Ti composite to MAO treatment using silicate-based and phosphate-based electrolytes.Results revealed that the Ti-reinforcement phase influenced the MAO process,altering discharge behavior,and leading to a decreased cell voltage.The vigorous discharge of the Ti-reinforcement phase induced the formation of coating discharge channels,concurrently dissolving and oxidizing Ti-reinforcement to produce a composite ceramic coating with TiO2.The MAO coating on the AZ91/Ti composite exhibited a dark blue macromorphology and distinctive local micromorphological anomalies.In silicate electrolyte,a“volcano-like”localized morphology centered on the discharge channel emerged.In contrast,treatment in phosphate-based electrolyte resulted in a coating morphology similar to typical porous ceramic coatings,with visible radial discharge micropores at the reinforcement phase location.Compared to the AZ91 alloy,the coating on the AZ91/Ti composite exhibited lower thickness and higher porosity.MAO treatment reduced the self-corrosion current density of the AZ91/Ti surface by two orders of magnitude.The silicate coating demonstrated better corrosion resistance than the phosphate coating,attributed to its lower porosity.The formation mechanism of MAO coatings on AZ91/Ti composites in phosphate-based and silicate-based electrolytes was proposed.
基金financially supported by the National Natural Science Foundation of China(No.12304077)the Natural Science Foundation of Science and Technology Department of Sichuan Province(No.23NSFSC6224)+3 种基金Sichuan Science and Technology Program(No.2024NSFSC0989)the Key Laboratory of Computational Physics of Sichuan Province(No.YBUJSWL-YB-2022-03)the Material Corrosion and Protection Key Laboratory of Sichuan Province(No.2023CL14 and No.2023CL01)the National Innovation Practice Project(No.202411079005S).
文摘Oxygen release and electrolyte decomposition under high voltage endlessly exacerbate interfacial ramifications and structu ral degradation of high energy-density Li-rich layered oxide(LLO),leading to voltage and capacity fading.Herein,the dual-strategy of Cr,B complex coating and local gradient doping is simultaneously achieved on LLO surface by a one-step wet chemical reaction at room temperature.Density functional theory(DFT)calculations prove that stable B-O and Cr-O bonds through the local gradient doping can significantly reduce the high-energy O 2p states of interfacial lattice O,which is also effective for the near-surface lattice O,thus greatly stabilizing the LLO surface,Besides,differential electrochemical mass spectrometry(DEMS)indicates that the Cr_(x)B complex coating can adequately inhibit oxygen release and prevents the migration or dissolution of transition metal ions,including allowing speedy Li^(+)migration,The voltage and capacity fading of the modified cathode(LLO-C_(r)B)are adequately suppressed,which are benefited from the uniformly dense cathode electrolyte interface(CEI)composed of balanced organic/inorganic composition.Therefore,the specific capacity of LLO-CrB after 200 cycles at 1C is 209.3 mA h g^(-1)(with a retention rate of 95.1%).This dual-strategy through a one-step wet chemical reaction is expected to be applied in the design and development of other anionic redox cathode materials.
基金supported by the National Natural Science Foundation of China(Grant No.W2412060,22325902 and 52171215)the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2023002)。
文摘Sodium-ion batteries(SIBs)have attracted significant attention in large-scale energy storage system because of their abundant sodium resource and cost-effectiveness.Layered oxide materials are particularly promising as SIBs cathodes due to their high theoretical capacities and facile synthesis.However,their practical applications are hindered by the limitations in energy density and cycling stability.The comprehensive understanding of failure mechanisms within bulk structure and at the cathode/electrolyte interface of cathodes is still lacking.In this review,the issues related to bulk phase degradation and surface degradation,such as irreversible phase transitions,cation migration,transition metal dissolution,air/moisture instability,intergranular cracking,interfacial reactions,and reactive oxygen loss,are discussed.The latest advances and strategies to improve the stability of layered oxide cathodes and full cells are provided,as well as our perspectives on the future development of SIBs.
基金financially supported by the National Natural Science Foundation of China(NSFC)(52274295)the Natural Science Foundation of Hebei Province(E2021501029)+3 种基金the Fundamental Research Funds for the Central Universities(N2423051,N2423053,N2302016,N2423019,N2323013,N2423005)the Science and Technology Project of Hebei Education Department(QN2024238)the Basic Research Program Project of Shijiazhuang City for Universities Stationed in Hebei Province(241790937A)the Science and Technology Project of Qinhuangdao City in 2023.
文摘Mn-based layered oxides(KMO)have emerged as one of the promising low-cost cathodes for potassiumion batteries(PIBs).However,due to the multiple-phase transitions and the distortion in the MnO6structure induced by the Jahn-Teller(JT)effect associated with Mn-ion,the cathode exhibits poor structural stability.Herein,we propose a strategy to enhance structural stability by introducing robust metal-oxygen(M-O)bonds,which can realize the pinning effect to constrain the distortion in the transition metal(TM)layer.Concurrently,all the elements employed have exceptionally high crustal abundance.As a proof of concept,the designed K_(0.5)Mn_(0.9)Mg_(0.025)Ti_(0.025)Al_(0.05)O_(2)cathode exhibited a discharge capacity of approximately 100 mA h g^(-1)at 20 mA g^(-1)with 79%capacity retention over 50 cycles,and 73%capacity retention over 200 cycles at 200 mA g^(-1),showcased much better battery performance than the designed cathode with less robust M-O bonds.The properties of the formed M-O bonds were investigated using theoretical calculations.The enhanced dynamics,mitigated JT effect,and improved structural stability were elucidated through the in-situ X-ray diffractometer(XRD),in-situ electrochemical impedance spectroscopy(EIS)(and distribution of relaxation times(DRT)method),and ex-situ X-ray absorption fine structure(XAFS)tests.This study holds substantial reference value for the future design of costeffective Mn-based layered cathodes for PIBs.
基金This work was supported by the National Natural Science Foundation of China(No.52001034)the China Postdoctoral Science Foundation(No.2023M731677)the Major Project of 2025 Sci&Tech Innovation of Ningbo(No.2020Z096).
文摘This research systematically examined the degradation,antibacterial effects,and biocompatibility of micro-arc oxidation(MAO)coatings with nano CuO and ZnO on extruded Mg alloys.Both copper(Cu)and Zinc(Zn)possess antibacterial properties.The findings demonstrated that adding ZnO will appreciably reduce the degradation rate of MAO-coating alloy due to the self-sealing micro holes.CuO+MAO coating exhibited excellent antibacterial performance,with an antibacterial rate of over 90%within 6 h co-cultured with Staphylococcus aureus.Similarly,the antibacterial rate of ZnO+MAO coating reached 90%after 12 h co-culture.Cytotoxicity test using MG63 cell indicated that the incorporation of CuO and ZnO did not notably affect the cell viability rate of the coating.Moreover,after 14 days of culture,the CuO+MAO and ZnO+MAO coated samples exhibited higher alkaline phosphatase(ALP)activity than the MAO-coated and uncoated samples,suggesting favorable osteogenic properties.
基金supported by the National Key R&D Program of China(No.2022YFB2404400)the National Natural Science Foundation of China(Nos.U23A20577,52372168,92263206 and 21975006)+1 种基金the“The Youth Beijing Scholars program”(No.PXM2021_014204_000023)the Beijing Natural Science Foundation(Nos.2222001 and KM202110005009).
文摘The cobalt-free Mn-based Li-rich layered oxide material has the advantages of low cost,high energy density,and good performance at low temperatures,and is the promising choice for energy storage batteries.However,the long-cycling stability of batteries needs to be improved.Herein,the Mn-based Li-rich cathode materials with small amounts of Li2 MnO3 crystal domains and gradient doping of Al and Ti elements from the surface to the bulk have been developed to improve the structure and interface stability.Then the batteries with a high energy density of 600 Wh kg^(-1),excellent capacity retention of 99.7%with low voltage decay of 0.03 mV cycle^(-1) after 800 cycles,and good rates performances can be achieved.Therefore,the structure and cycling stability of low voltage Mn-based Li-rich cathode materials can be significantly improved by the bulk structure design and interface regulation,and this work has paved the way for developing low-cost and high-energy Mn-based energy storage batteries with long lifetime.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.
基金Funded by the National Natural Science Foundation of China (No. 51905506)。
文摘Oxide ceramic coatings were fabricated on tantalum alloys by micro-arc oxidation (MAO) to improve their hardness and tribological properties. The MAO coatings were manufactured in a mixed silicatephosphate electrolyte containing NaF and/or EDTA (ethylene diamine tetraacetic acid). The surface morphology,cross-sectional view, chemical composition, hardness, and wear performance of the coatings were analysed. As revealed by the scanning electron microscopy, silica-rich nodules appear on the MAO coating obtained in the silicate-phosphate electrolyte, but the formation of nodules is inhibited with NaF and/or EDTA in the electrolyte.Also, they reduce the roughness and improve the compactness of the coatings, which are composed of Ta_(2)O_(5),(Ta, O), and TaO. A thick and hard coating is obtained in the NaF-containing electrolyte, and the tribology performance is effectively improved. With additives, the nodule structure is detached from the coating surface and dissolved in the electrolyte. By using NaF as an electrolyte additive, the abrasion performance of the MAO coating is enhanced by decreasing the nodule structure, increasing the size of micropores, and improving the coating hardness.
基金supported by the National Natural Science Foundation of China(22169002 and 22469003)the Chongzuo Key Research and Development Program of China(20241205 and 20231204)the Counterpart Aid Project for Discipline Construction from Guangxi University(2023M02)。
文摘Expanding the cutoff voltage of layered oxide cathodes for sodium-ion batteries(SIBs)is crucial for overcoming their existing energy density limitations.However,cationic/anodic redox-triggered multiple phase transitions and unfavorable interfacial side reactions accelerate capacity and voltage decay.Herein,we present a straightforward melting plus reactive wetting strategy using H_(3)BO_(3)for surface modification of O_(3)-type Na_(0.9)Cu_(0.12)Ni_(0.33)Mn_(0.4)Ti_(0.15)O_(2)(CNMT).The transformation of H_(3)BO_(3)from solid to liquid under mild heating facilitates the uniform dispersion and complete surface coverage of CNMT particles.By neutralizing the residual alkali and extracting Na^(+)from the CNMT lattice,H_(3)BO_(3)forms a multifunctional Na_(2)B_(2)O_(5)-dominated layer on the CNMT surface.This Na_(x)B_(y)O_(z)(NBO)layer plays a positive role in providing low-barrier Na^(+)transport channels,suppressing phase transitions,and minimizing the generation of O_(2)/CO_(2)gases and resistive byproducts.As a result,at a charge cutoff voltage of 4.5 V,the NBO-coated CNMT delivers a high discharge capacity of 149,1 mAh g^(-1)at 10 mA g^(-1)and exhibits excellent cycling stability at 100 mA g^(-1)over 200 cycles with a higher capacity retention than that of pristine CNMT(86,4%vs,62.1%).This study highlights the effectiveness of surface modification using lowmelting-point solid acids,with potential applications for other layered oxide cathode materials to achieve stable high-voltage cycling.This proposed strategy opens new avenues for the construction of highquality coatings for high-voltage layered oxide cathodes in SIBs.
基金Projects(41827805,41976044)supported by the National Natural Science Foundation of ChinaProject(ZDYF2021GXJS210)supported by the Hainan Provincial Science and Technology Special Fund,China+2 种基金Project(2021CXLH0005)supported by the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City,ChinaProject(2021WHZZB2301)supported by the Wenhai Program of the S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology,ChinaProject(121311KYSB20210005)supported by the Overseas Science and Education Centers of Bureau of International Cooperation Chinese Academy of Sciences。
文摘Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc oxidation.Thecoatings exhibited good corrosion resistance and antimicrobial properties.X-ray diffraction(XRD),scanning electronmicroscopy(SEM),and 3D laser confocal were used to characterize the coatings.The properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were analyzed,including microstructure,surface roughness,corrosion resistance,andantimicrobial properties.The electrochemical results showed that the coatings prepared by microarc oxidation hadenhanced corrosion resistance compared to the substrate.The antibacterial properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coating against Pseudomonas aeruginosa were evaluated by fluorescence microscopy and plate counting.The antibacterial rate of TiO_(2)/Cu_(2)O@CeO_(2)coating was up to 99.70%.In summary,the TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings prepared by microarc oxidation have a potential application background in the field of marine corrosionprotection and biofouling.
文摘Broadband transparent films play a pivotal role in various applications such as lenses and solar cells,particularly porous structured transparent films exhibit significant potential.This study investigates a porous SiO_(2) refractive index gradient anti-reflective film prepared by atomic layer deposition(ALD).A porous SiO_(2) film with gradual porosity was obtained by phosphoric acid etching of Al_(2)O_(3)/SiO_(2) multilayers with gradient Al2O3 ratios,achieving a gradual decrease in refractive index from the substrate to the surface.The film exhibited an average transmittance as high as 97.8%within the wavelength range from 320 nm to 1200 nm.The environmental adaptability was further enhanced by surface modification using rare earth oxide(REO)La_(2)O_(3),resulting in formation of a lotus leaf-like structure and achieving a water contact angle of 100.0°.These data proved that the modification significantly improved hydrophobic self-cleaning capability while maintaining exceptional transparency of the film.The surface structure of the modified film remained undamaged even after undergoing wipe testing,demonstrating its excellent surface durability.
基金support from the Free Exploration Project of Frontier Technology for Laoshan Laboratory(No.16-02)the National Natural Science Foundation of China(Nos.22072015 and 21927811)。
文摘Electrocatalytic hydrogen production from seawater holds enormous promise for clean energy generation.Nevertheless,the direct electrolysis of seawater encounters significant challenges due to poor anodic stability caused by detrimental chlorine chemistry.Herein,we present our recent discovery that the incorporation of Ce into Ni Fe layered double hydroxide nanosheet array on Ni foam(Ce-Ni Fe LDH/NF)emerges as a robust electrocatalyst for seawater oxidation.During the seawater oxidation process,CeO_(2)is generated,effectively repelling Cl^(-)and inhibiting the formation of Cl O-,resulting in a notable enhancement in the oxidation activity and stability of alkaline seawater.The prepared Ce-Ni Fe LDH/NF requires only overpotential of 390 m V to achieve the current density of 1 A cm^(-2),while maintaining long-term stability for 500 h,outperforming the performance of Ni Fe LDH/NF(430 m V,150 h)by a significant margin.This study highlights the effectiveness of a Ce-doping strategy in augmenting the activity and stability of materials based on Ni Fe LDH in seawater electrolysis for oxygen evolution.
基金National Key Research and Development Program of China,Grant/Award Number:2023YFB2406100Yibin‘Jie Bang Gua Shuai’,Grant/Award Number:2022JB003National Natural Science Foundation of China,Grant/Award Number:52172234。
文摘The O3-type layered cathode with high Ni content has attracted much attention because of its high capacity and simple synthesis process.However,surface side reaction and O3-P3 phase transitions would occur during Na+insertion/extraction,resulting in unsatisfying electrochemical performance.Herein,O3-Na[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_(2)(NNCM622)cathode is modified by a NaTiOx coating layer in a wet chemistry method,which reduces the parasitic reaction and facilitates Na+migration.Simultaneously,the partially doped Ti improves structural stability by restraining the irreversible multiple-phase transition.As a result,the modified NNCM622 cathode obtains a high specific capacity of 143.4 mAh g^(−1)and an improved capacity retention of 69%after 300 cycles.Our work offers new prospects for stabilizing the NNCM622 cathode with a feasible coating strategy.
基金financially supported by the National Natural Science Foundation of China(No.52071073,52177208,and 52171202)the Hebei Province“333 talent project”(No.C20221012)+2 种基金the Science and Technology Project of Hebei Education Department(BJK2023005)the Fundamental Research Funds for the Central Universities(2024GFZD002)the Natural Science Foundation of Hebei Province(E2024501015)。
文摘O3-type layered oxide cathodes for sodium-ion batteries are promising owing to high theoretical capacity and broad temperature adaptability,yet hindered by structural degradation and sluggish Na^(+)diffusion kinetics.Herein,we present a sodium-deficient high-entropy layered oxide cathode(Na_(0.85)Ni_(0.3)Mn_(0.3)Fe_(0.1)Co_(0.15)Ti_(0.1)Cu_(0.05)B_(0.02)O_(2),denoted as Na0.85-HEO),combining sodium content optimization and high-entropy composition design.Incorporating six transition metals and light element boron creates a unique high-entropy configuration,effectively mitigating local lattice distortion and internal strain through chemical disorder effects,thereby enabling highly reversible phase transitions(O3-P3-O3)and smaller volume change(0.6A^(3))during the initial cycle.The sodium-deficient high-entropy design effectively increases the sodium interlayer spacing to 0.322 nm,facilitating the Na^(+)diffusion kinetics.Moreover,this high-entropy strategy enables the cathode to have a completely solid solution charge curve and significantly reduces the proportion of(O_(2))^(n-),thereby suppressing gas release during the cycling process.The resultant cathode demonstrates exceptional cyclability(80% capacity retention after 400 cycles at 100 mA g^(-1)in a full cell),and remarkable low-temperature performance(108.6 mAh g^(-1)at -40℃).This work guides the design of high-entropy electrode materials with tailored ionic transport channels for extreme-temperature energy storage applications.
基金National Key Research and Development Program of China,Grant/Award Number:2022YFB2502000National Natural Science Foundation of China,Grant/Award Number:52207244。
文摘In the realm of sodium-ion batteries(SIBs),Mn-based layered oxide cathodes have garnered considerable attention owing to their anionic redox reactions(ARRs).Compared to other types of popular sodium-ion cathodes,Mn-based layered oxide cathodes with ARRs exhibit outstanding specific capacity and energy density,making them promising for SIB applications.However,these cathodes still face some scientific challenges that need to be addressed.This review systematically summarizes the composition,structure,oxygen-redox mechanism,and performance of various types of Mn-based cathodes with ARRs,as well as the main scientific challenges they face,including sluggish ion diffusion,cationic migration,O_(2) release,and element dissolution.Currently,to resolve these challenges,efforts mainly focus on six aspects:synthesis methods,structural design,doped modification,electrolyte design,and surface engineering.Finally,this review provides new insights for future direction,encompassing both fundamental research,such as novel cathode types,interface optimization,and interdisciplinary research,and considerations from an industrialization perspective,including scalability,stability,and safety.
基金Korea Institute of Science and Technology,Grant/Award Number:2E33270National Research Foundation of Korea,Grant/Award Number:2020M3H4A3081889。
文摘Sodium-ion batteries(SIBs)employ P2-type layered transition metal oxides as promising cathode materials,primarily due to their abundant natural reserves and environmentally friendly characteristics.However,structural instability and complex phase transitions during electrochemical cycling pose significant challenges to their practical applications.Employing cation substitution serves as a straightforward yet effective strategy for stabilizing the structure and improving the kinetics of the active material.In this study,we introduce a Ni-rich honeycomb-layered Na_(2+x)Ni_(2)TeO_(6)(NNTO)cathode material with variable sodium content(x=0,0.03,0.05,0.10).Physicochemical characterizations reveal that excess sodium content at the atomic scale modifies the surface and suppresses phase transitions,while preserving the crystal structure.This results in enhanced cyclic performance and improved electrochemical kinetics at room temperature.Furthermore,we investigate the performance of the NNTO cathode material containing 10%excess sodium at a relatively high temperature of 60℃,where it exhibits 71.6%capacity retention compared to 60%for the pristine.Overall,our results confirm that a preconstructed surface layer(induced by excess sodium)effectively safeguards the Ni-based cathode material from surface degradation and phase transitions during the electrochemical processes,thus exhibiting superior capacity retention relative to the pristine NNTO cathode.This study of the correlation between structure and performance can potentially be applied to the commercialization of SIBs.