Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an ...Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an inevitable trend for the future of health monitoring, and the construction of chips for detection faces major challenges. The response of sensors often fails to meet the requirements for chipbased detection of trace substances due to the low efficiency of interfacial heterogeneous reactions, necessitating a rational design approach for micro-and nano-structures to improve sensor performance with respect to sensitivity and detection limits. This review focuses on the influence of micro-and nanostructures that used in chip on sensing. Firstly, this review categorizes sensors into chemiresistors, electrochemical sensors, fluorescence sensors, and surface enhanced Raman scattering(SERS) sensors based on their sensing principle, which have significant applications in disease diagnosis. Subsequently, commencing from the application requirements in the field of sensing, this review focuses on the different structures of nanoparticle(NP) assemblies, including wire, layered, core-shell, hollow, concave and deformable structures. These structures change in the size, shape, and morphology of conventional structures to achieve characteristics such as ordered alignment, high specific surface area, space limitation,vertical diffusion, and swaying behavior with fluid, thereby addressing issues such as poor signal transmission efficiency, inadequate adsorption and capture capacity, and slow mass transfer speed during sensing. Finally, the design direction of micro-and nano-structures, and possible obstacles and solutions to promote chip-based detection have been discussed. It is hope that this article will inspire the exploration of interface micro-and nano-structures modulated sensing methods.展开更多
We report the synthesis and electrochemical sodium storage of cobalt disulfide (COS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solv...We report the synthesis and electrochemical sodium storage of cobalt disulfide (COS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solvothermal route or nano- octahedrons constructed solid (O-COS2) and hollow microstructures (H-CoS2) fabricated by hydrothermal methods. Among three morphologies, H-CoS2 exhibits the largest discharge capacities and best rate performance as anode of sodium-ion batteries (SIBs). Furthermore, H-CoS2 delivers a capacity of 690 mA.h.g 1 at 1 A·g 1 after 100 cycles in a potential range of 0.1-3.0 V, and N240 mA.h.g-1 over 800 cycles in the potential window of 1.0-3.0 V. This cycling difference mainly lies in the two discharge plateaus observed in 0.1-3.0 V and one discharge plateau in 1.0-3.0 V. To interpret the reactions, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are applied. The results show that at the first plateau around 1.4 V, the insertion reaction (COS2 + xNa* + xe NaxCoS2) Occurs; while at the second plateau around 0.6 V, the conversion reaction (NaxCoS2 + (4 - x) Na+ + (4 - x)e -~ Co + 2Na2S) takes place. This provides insights for electrochemical sodium storage of CoS2 as the anode of SIBs.展开更多
Electrohydrodynamicjet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liqui...Electrohydrodynamicjet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication ofmicro/nano-structures for micro/nano-electromechanical system devices. This tech- nique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.展开更多
Hydrogels, composed mainly of water trapped in three dimensional cross-linked polymer networks, have been widely utilized to construct underwater superoleophobic surfaces. However, the swelling nature and instability ...Hydrogels, composed mainly of water trapped in three dimensional cross-linked polymer networks, have been widely utilized to construct underwater superoleophobic surfaces. However, the swelling nature and instability of hydrogels under complex marine environment will weaken their underwater superoleophobicity. Herein, we synthesize structured poly (2-hydroxyethylmethacrylate) (PHEMA) hydrogels by using sandpaper as templates. The robust non-swelling of PHEMA hydrogel ensures that micro/nano-structures on the surface of PHEMA hydrogels can be well maintained. Moreover, when roughness Ra of about 3-4 bun, the surface has superior oil-repellency. Additionally, even after immersing in seawater for one-month, their breaking strength and toughness can be well kept. The non-swellable hydrogels with long-term stable under seawater superoleophobicity will promote the development of robust superoleophobic materials in marine antifouling coatings, biomedical devices and oil/water separation.展开更多
Modulating the activation state and degree of macrophages still remains as a challenge for the topographical design of Ti-based implants.In this work,micro/nano-structured coatings were prepared on Ti substrates by mi...Modulating the activation state and degree of macrophages still remains as a challenge for the topographical design of Ti-based implants.In this work,micro/nano-structured coatings were prepared on Ti substrates by micro-arc oxidation(MAO)and subsequent hydrothermal(HT)treatment.By varying the HT conditions,plate-like nano-structures with an average length of 80,440 or 780 nm were obtained on MAO-prepared micro-topographical surfaces.Depending on the dimensional features of nano-plates,the specimens were noted as Micro,Micro/Nano-180,Micro/Nano-440 and Micro/Nano-780,respectively.The in vitro results showed that the activation state and degree of macrophages could be effectively modulated by the micro/nano-structured surfaces with various dimensional features.Compared to the Micro surface,the Micro/Nano-180 surface activated both M1 and M2 phenotype in macrophages,while the Micro/Nano-440 and Micro/Nano-780 surfaces polarized macrophages to their M1 phenotype.The activation degree of M1 macrophages followed the trend:Micro<Micro/Nano-180<Micro/Nano-440<Micro/Nano-780.However,the osteogenic potential of the activated macrophages in response to various surfaces were in the order:Micro≈Micro/Nano-780<Micro/Nano-180<Micro/Nano-440.Together,the findings presented in this work indicate that engineering nano-structures with controllable dimensional features is a promising strategy to modulate macrophage activation state and degree.In addition,it is essential to determine the appropriate activation degree of M1 macrophages for enhanced osteogenesis.展开更多
A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 n...A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 nm)with an ultra-high density of ultra-fine Y-Al-O nano-oxides(number density:~(1-1.5)×10^(23)m^(−3),mean size:5.1-7.2 nm).Prolonged thermal exposure further induced the new,highly dense precipitation of ultra-fine Y-Zr-O nano-oxides.Both nano-oxides tended to be wrapped up with a B2-NiAl nano-shells.Although the quench-tempered sample showed much higher room-temperature strength(yield strength=1393±40 MPa and ultimate tensile strength=1774±11 MPa)and slightly lower elongation(elongation=13.6%±0.6%)than the annealed sample(YS=988±7 MPa,UTS=1490±12 MPa,and EL=15.2%±1.1%),both samples exhibited better strength-ductility synergy at room temperature and much higher thermal stabilities at high temperatures(600-700℃)than all those conventional hot-work die steels,which makes the new ODS steel highly promising for advanced hot-work mold and die applications at high temperatures above 600℃.展开更多
Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step...Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.展开更多
基金financially supported by the National Natural Science Foundation of China (No.21925405)。
文摘Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an inevitable trend for the future of health monitoring, and the construction of chips for detection faces major challenges. The response of sensors often fails to meet the requirements for chipbased detection of trace substances due to the low efficiency of interfacial heterogeneous reactions, necessitating a rational design approach for micro-and nano-structures to improve sensor performance with respect to sensitivity and detection limits. This review focuses on the influence of micro-and nanostructures that used in chip on sensing. Firstly, this review categorizes sensors into chemiresistors, electrochemical sensors, fluorescence sensors, and surface enhanced Raman scattering(SERS) sensors based on their sensing principle, which have significant applications in disease diagnosis. Subsequently, commencing from the application requirements in the field of sensing, this review focuses on the different structures of nanoparticle(NP) assemblies, including wire, layered, core-shell, hollow, concave and deformable structures. These structures change in the size, shape, and morphology of conventional structures to achieve characteristics such as ordered alignment, high specific surface area, space limitation,vertical diffusion, and swaying behavior with fluid, thereby addressing issues such as poor signal transmission efficiency, inadequate adsorption and capture capacity, and slow mass transfer speed during sensing. Finally, the design direction of micro-and nano-structures, and possible obstacles and solutions to promote chip-based detection have been discussed. It is hope that this article will inspire the exploration of interface micro-and nano-structures modulated sensing methods.
基金This work was supported by the National Natural Science Foundation of China (No. 51231003) and MOE (Nos. B12015 and IRT13R30).
文摘We report the synthesis and electrochemical sodium storage of cobalt disulfide (COS2) with various micro/nano-structures. CoS2 with microscale sizes are either assembled by nanoparticles (P-CoS2) via a facile solvothermal route or nano- octahedrons constructed solid (O-COS2) and hollow microstructures (H-CoS2) fabricated by hydrothermal methods. Among three morphologies, H-CoS2 exhibits the largest discharge capacities and best rate performance as anode of sodium-ion batteries (SIBs). Furthermore, H-CoS2 delivers a capacity of 690 mA.h.g 1 at 1 A·g 1 after 100 cycles in a potential range of 0.1-3.0 V, and N240 mA.h.g-1 over 800 cycles in the potential window of 1.0-3.0 V. This cycling difference mainly lies in the two discharge plateaus observed in 0.1-3.0 V and one discharge plateau in 1.0-3.0 V. To interpret the reactions, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are applied. The results show that at the first plateau around 1.4 V, the insertion reaction (COS2 + xNa* + xe NaxCoS2) Occurs; while at the second plateau around 0.6 V, the conversion reaction (NaxCoS2 + (4 - x) Na+ + (4 - x)e -~ Co + 2Na2S) takes place. This provides insights for electrochemical sodium storage of CoS2 as the anode of SIBs.
文摘Electrohydrodynamicjet (E-Jet) is an approach to the fabrication of micro/nano-structures by the use of electrical forces. In this process, the liquid is subjected to electrical and mechanical forces to form a liquid jet, which is further disintegrated into droplets. The major advantage of the E-Jet technique is that the sizes of the jet formed can be at the nanoscale far smaller than the nozzle size, which can realize high printing resolution with less risk of nozzle blockage. The E-Jet technique, which mainly includes E-Jet deposition and E-Jet printing, has a wide range of applications in the fabrication ofmicro/nano-structures for micro/nano-electromechanical system devices. This tech- nique is also considered a micro/nano-fabrication method with a great potential for commercial use. This study mainly reviews the E-Jet deposition/printing fundamentals, fabrication process, and applications.
基金supported by the National Natural Science Foundation (21574004, 21421061, 21434009, 21301036)the National Research Fund for Fundamental Key Projects (2012CB933800)+4 种基金the Fundamental Research Funds for the Central Universitiesthe National “Young Thousand Talents Program”Xiamen Southern Oceanographic Center (14GQT61HJ31)the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-M01, KJZD-EW-M03)the Program of Introducing Talents of Discipline to Universities of China (B14009)
文摘Hydrogels, composed mainly of water trapped in three dimensional cross-linked polymer networks, have been widely utilized to construct underwater superoleophobic surfaces. However, the swelling nature and instability of hydrogels under complex marine environment will weaken their underwater superoleophobicity. Herein, we synthesize structured poly (2-hydroxyethylmethacrylate) (PHEMA) hydrogels by using sandpaper as templates. The robust non-swelling of PHEMA hydrogel ensures that micro/nano-structures on the surface of PHEMA hydrogels can be well maintained. Moreover, when roughness Ra of about 3-4 bun, the surface has superior oil-repellency. Additionally, even after immersing in seawater for one-month, their breaking strength and toughness can be well kept. The non-swellable hydrogels with long-term stable under seawater superoleophobicity will promote the development of robust superoleophobic materials in marine antifouling coatings, biomedical devices and oil/water separation.
基金supported by the National Natural Science Foundation of China(Grant No.51771233,52071346 and 51604104)China Postdoctoral Science Foundation(Grant No.2018M633164)+1 种基金Innovation-oriented Advanced Technology and Industrial Technology Program Project of Hunan Province(Grant No.2020SK2017)Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110736)。
文摘Modulating the activation state and degree of macrophages still remains as a challenge for the topographical design of Ti-based implants.In this work,micro/nano-structured coatings were prepared on Ti substrates by micro-arc oxidation(MAO)and subsequent hydrothermal(HT)treatment.By varying the HT conditions,plate-like nano-structures with an average length of 80,440 or 780 nm were obtained on MAO-prepared micro-topographical surfaces.Depending on the dimensional features of nano-plates,the specimens were noted as Micro,Micro/Nano-180,Micro/Nano-440 and Micro/Nano-780,respectively.The in vitro results showed that the activation state and degree of macrophages could be effectively modulated by the micro/nano-structured surfaces with various dimensional features.Compared to the Micro surface,the Micro/Nano-180 surface activated both M1 and M2 phenotype in macrophages,while the Micro/Nano-440 and Micro/Nano-780 surfaces polarized macrophages to their M1 phenotype.The activation degree of M1 macrophages followed the trend:Micro<Micro/Nano-180<Micro/Nano-440<Micro/Nano-780.However,the osteogenic potential of the activated macrophages in response to various surfaces were in the order:Micro≈Micro/Nano-780<Micro/Nano-180<Micro/Nano-440.Together,the findings presented in this work indicate that engineering nano-structures with controllable dimensional features is a promising strategy to modulate macrophage activation state and degree.In addition,it is essential to determine the appropriate activation degree of M1 macrophages for enhanced osteogenesis.
基金support from the National MCF Energy R&D Program of China(No.2018YFE0306100).
文摘A novel oxide-dispersion-strengthened(ODS)die steel was fabricated by mechanical alloying and hot consolidation.Annealing and quench-tempering treatments both obtained an ultra-fine grain structure(mean size:310-330 nm)with an ultra-high density of ultra-fine Y-Al-O nano-oxides(number density:~(1-1.5)×10^(23)m^(−3),mean size:5.1-7.2 nm).Prolonged thermal exposure further induced the new,highly dense precipitation of ultra-fine Y-Zr-O nano-oxides.Both nano-oxides tended to be wrapped up with a B2-NiAl nano-shells.Although the quench-tempered sample showed much higher room-temperature strength(yield strength=1393±40 MPa and ultimate tensile strength=1774±11 MPa)and slightly lower elongation(elongation=13.6%±0.6%)than the annealed sample(YS=988±7 MPa,UTS=1490±12 MPa,and EL=15.2%±1.1%),both samples exhibited better strength-ductility synergy at room temperature and much higher thermal stabilities at high temperatures(600-700℃)than all those conventional hot-work die steels,which makes the new ODS steel highly promising for advanced hot-work mold and die applications at high temperatures above 600℃.
基金supported by the Jilin Province Key Research and Development Plan Project(20240302066GX)the National Natural Science Foundation of China(Grant No.52075221)the Fundamental Research Funds for the Central Universities(2023-JCXK-02)。
文摘Micro/nano hierarchical structures could endow materials with various surface functions.However,the multilayer and multiscale characteristics of micro/nano hierarchical structures bring difficulties for their one step and controllable fabrication.Accordingly,based on tip-based fabrication techniques,this study proposed a micro-amplitude vibration-assisted scratching method by introducing a periodic backward displacement into the conventional scratching process,which enabled the synchronous creation of the microscale V-groove and nanoscale ripples,i.e.a typical micro/nano hierarchical structure.The experiments and finite element modeling were employed to explore the formation process and mechanism of the micro/nano hierarchical structures.Being different from conventional cutting,this method was mainly based on the plow mechanism,and it could accurately replicate the shape of the indenter on the material surface.The microscale V-groove was formed due to the scratching action,and the nanoscale ripple was formed due to the extrusion action of the indenter on the microscale V-groove’s surface.Furthermore,the relationships between the processing parameters and the dimensions of the micro/nano hierarchical structures were established through experiments,and optimized processing parameters were determined to achieve regular micro/nano hierarchical structures.By this method,complex patterns constructed by various micro/nano hierarchical structures were fabricated on both flat and curved surfaces,achieving diverse surface structural colors.