Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive ...Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.展开更多
Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This pape...Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This paper proposes an architecture by combining RIS with Generalized Spatial Modulation(GSM)and then presents a Multi-Residual Deep Neural Network(MR-DNN)scheme,where the active antennas and their transmitted constellation symbols are detected by sub-DNNs in the detection block.Simulation results demonstrate that the proposed MR-DNN detection algorithm performs considerably better than the traditional Zero-Forcing(ZF)and the Minimum Mean Squared Error(MMSE)detection algorithms in terms of Bit Error Rate(BER).Moreover,the MR-DNN detection algorithm has less time complexity than the traditional detection algorithms.展开更多
Based on the objective reality of channel estimation error,this paper introduces a novel artificial noise(AN)aided spatial modulation(SM)secrecyenhancing scheme under imperfect channel state information(CSI).In the pr...Based on the objective reality of channel estimation error,this paper introduces a novel artificial noise(AN)aided spatial modulation(SM)secrecyenhancing scheme under imperfect channel state information(CSI).In the proposed scheme,SM is used to activate one antenna from the transmit antennas,and the information symbols will be transmitted with the designed AN at each timeslot.By utilizing the legitimate channel’s imperfect CSI,AN is generated across two adjacent timeslots.Because the CSI is known at the legitimate receiver,then it can perfectly cancel the AN.However,the eavesdropper knows nothing of the legitimate channel’s CSI,so it can not recover any useful information from the AN.At the receiver,a new detection scheme that detects across two adjacent timeslots is also proposed.With imperfect CSI,the secrecy rate of the proposed scheme is derived over Rayleigh fading channels in order to investigate the performance.Moreover,based on the secrecy performance analysis,the lower bound of the ergodic secrecy rate(ESR),the corresponding closed form of the lower bound,and the approximated expression are also derived.The simulation results verified in this paper prove that the proposed scheme with imperfect CSI can achieve satisfactory performance.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to...In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to the inter-carrier interference.In this paper,we propose a reconfigurable intelligent surface(RIS)-assisted receive spatial modulation(SM)scheme based on the spatial-temporal correlated HSR Rician channel.The characteristics of SM and the phase shift adjustment of RIS are used to mitigate the performance degradation in high mobility scenarios.Considering the influence of channel spatial-temporal correlation and Doppler shift,the effects of different parameters on average bit error rate(BER)performance and upper bound of ergodic capacity are analyzed.Therefore,a joint antenna and RIS-unit selection algorithm based on the antenna removal method is proposed to increase the capacity performance of communication links.Numerical results show that the proposed RIS-assisted receive SM scheme can maintain high transmission capacity compared to the conventional HSR-SM scheme,whereas the degradation of BER performance can be compensated by arranging a large number of RIS-units.In addition,selecting more RIS-units has better capacity performance than activating more antennas in the low signal-to-noise ratio regions.展开更多
The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the p...The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China.展开更多
This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID ...This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.展开更多
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.展开更多
In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In t...In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In this paper,we propose a spatial coded modulation(SCM)scheme,which improves the accuracy of the active antenna detection by coding over the transmit antennas.Specifically,the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than the conventional spatial modulation.As the minimum Hamming distance increases,the reliability of the active antenna detection is directly enhanced,which yields a better system reliability.In addition to the reliability,the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional counterpart.The optimal maximum likelihood detector is first formulated.Then,a low-complexity suboptimal detector is proposed to reduce the computational complexity.Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios.Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance.Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.展开更多
Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited...Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.展开更多
Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strate...This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.展开更多
Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,...Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.展开更多
Solid-state batteries(SSBs) with high safety are promising for the energy fields,but the development has long been limited by machinability and interfacial problems.Hence,self-supporting,flexible Nano LLZO CSEs are pr...Solid-state batteries(SSBs) with high safety are promising for the energy fields,but the development has long been limited by machinability and interfacial problems.Hence,self-supporting,flexible Nano LLZO CSEs are prepared with a solvent-free method at 25℃.The 99.8 wt% contents of Nano LLZO particles enable the Nano LLZO CSEs to maintain good thermal stability while exhibiting a wide electrochemical window of 5.0 V and a high Li~+ transfer number of 0.8.The mean modulus reaches 4376 MPa.Benefiting from the interfacial modulation,the Li|Li symmetric batteries based on the Nano LLZO CSEs show benign stability with lithium at the current densities of 0.1 mA cm^(-2),0.2 mA cm^(-2),and 0.5 mA cm^(-2).In addition,the Li|LiFePO_(4)(LFP) SSBs achieve favorable cycling performance:the specific capacity reaches128.1 mAh g^(-1) at 0.5 C rate,with a capacity retention of about 80% after 600 cycles.In the further tests of the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathodes with higher energy density,the Nano LLZO CSEs also demonstrate good compatibility:the specific capacities of NCM811-based SSBs reach 177.9 mAh g^(-1) at 0.5 C rate,while the capacity retention is over 96% after 150 cycles.Furthermore,the Li|LFP soft-pack SSBs verify the safety characteristics and the potential for application,which have a desirable prospect.展开更多
Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailin...Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailing methodologies typically infer statistical distributions of fracture sizes rather than specific values.This research presents a novel approach to inferring the MPD and the true spatial distribution pattern of each fracture.The challenge lies in linking the inference process with the trace length of each fracture and the statistical characteristics of the entire outcrop.Additionally,it is necessary to address the non-unique inverse problem.The methodology comprises several key steps.Firstly,the issue of censoring bias is addressed by considering the lengths of the traces contained.Secondly,the orientation bias is corrected using the vector method,and the true mean trace length and standard deviation are estimated and derived.Thirdly,assuming a lognormal distribution for fracture sizes,the mean and standard deviation of diameters are derived through a high-order moment relationship between trace lengths and diameters,validated by Crofton's theorem.Finally,the MPDs of all trace samples are determined by relating MPDs to trace lengths and the standard deviation of diameters using stereology techniques.Furthermore,the true fracture spatial patterns are inverted based on spatial geometric relationships.The proposed methodology is validated through rigorous Monte Carlo simulation and applied in a practical engineering case study,demonstrating its potential for use in rock engineering applications.展开更多
Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrati...Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.展开更多
A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard d...A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard deviationσ)of the geometric properties(i.e.,the fracture dip D,the trace length T and the spacing S)of both the gently-dipping(denoted with 1)and the steeply-dipping(denoted with 2)fractures on the stability of granite slope are investigated.Results indicate that the proposed DFN-DEC method is robust,generating fracture networks that resemble reality.In addition,the spatial variability of fracture geometry,influencing the structure of granite slope,plays a significant role in slope stability.The mean stability of the slope decreases with the increase ofμ_(D_(1))(the mean of gently-dipping fracture dip),σ_(D_(2))(the mean of steeply-dipping fracture dip),μ_(T_(1))(the mean of gently-dipping fracture trace length),μ_(T_(2))(the mean of steeply-dipping fracture trace length),σ_(T_(1))(the standard deviation of gently-dipping fracture trace length),σ_(T_(2))(the standard deviation of steeply-dipping fracture trace length),and the decrease ofσ_(D_(1))(the standard deviation of gently-dipping fracture dip),μ_(D_(2))(the standard deviation of steeply-dipping fracture dip),μ_(S_(1))(the mean of gently-dipping fracture spacing)andμ_(S_(2))(the mean of steeply-dipping fracture spacing).Among them,μ_(T_(1)),μ_(D_(1))andμ_(S_(1))have the major impact.When the fracture spacing is large,the variability in the fracture geometry becomes less relevant to slope stability.When within some ranges of the fracture spacing,the spatial varying of dips can increase the slope stability by forming an interlaced structure.The results also show that the effects of the variability of trace length on slope stability depend on the variability of dip.These findings highlight the importance of spatial variability in the geometry of fractures to rock slope stability analysis.展开更多
Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however...Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration.展开更多
Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because th...Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.展开更多
With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
基金supported in part by the National Key R&D Program of China under Grant 2023YFB2904500in part by the National Natural Science Foundation of China under Grant 62471183in part by the Fundamental Research Funds for the Central Universities under Grant 2024ZYGXZR076.
文摘Existing Generalized Receive Spatial Modulation(GRSM)with Symbol-Level Precoding(SLP)forces the received signals(excluding noise)at unintended antennas to be zero,which restricts the generation of strong constructive interference to intended receive antennas and thus limits the performance improvement over conventional GRSM with Zero-Forcing(ZF)precoding.In this paper,we propose a novel GRSM-SLP scheme that relaxes the zero receive power constraint and achieves superior performance by integrating Intelligent Reflecting Surfaces(IRSs).Specifically,our advanced GRSM-RSLP jointly exploits SLP at the transmitter and passive beamforming at the IRS to maximize the power difference between intended and unintended receive antennas,where the received signals at unintended antennas are relaxed to lie in a sphere centered at origin with a preset radius that depends on the Signal-to-Noise Ratio(SNR)value.The precoding matrix and passive beamforming vectors are optimized alternately by considering both phase shift keying and quadrature amplitude modulation signaling.It is worth emphasizing that GRSM-RSLP is a universal solution,also applicable to systems without IRS,although it performs better in IRS-assisted systems.We finally conduct extensive simulations to prove the superiority of GRSM-RSLP over GRSM-ZF and GRSM-SLP.Simulation results show that the performance of GRSM-RSLP is significantly influenced by the number of unintended antennas,and the larger the number,the better its performance.In the best-case scenario,GRSM-RSLP can achieve SNR gains of up to 10.5 dB and 12.5 dB over GRSM-SLP and GRSM-ZF,respectively.
基金supported in part by the Shenzhen Basic Research Program under Grant JCYJ20220531103008018,20231120142345001 and 20231127144045001the Guangdong Basic Research Program under Grant 2024ZDZX1016the Natural Science Foundation of China under Grant U20A20156.
文摘Reconfigurable Intelligent Surface(RIS)is regarded as a cutting-edge technology for the development of future wireless communication networks with improved frequency efficiency and reduced energy consumption.This paper proposes an architecture by combining RIS with Generalized Spatial Modulation(GSM)and then presents a Multi-Residual Deep Neural Network(MR-DNN)scheme,where the active antennas and their transmitted constellation symbols are detected by sub-DNNs in the detection block.Simulation results demonstrate that the proposed MR-DNN detection algorithm performs considerably better than the traditional Zero-Forcing(ZF)and the Minimum Mean Squared Error(MMSE)detection algorithms in terms of Bit Error Rate(BER).Moreover,the MR-DNN detection algorithm has less time complexity than the traditional detection algorithms.
基金supported in part by the Natural Science Project of Hubei Province under Grant 2023AFB383in part by the Open Foundation of Hubei Key Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System under Grant HBSEES202107.
文摘Based on the objective reality of channel estimation error,this paper introduces a novel artificial noise(AN)aided spatial modulation(SM)secrecyenhancing scheme under imperfect channel state information(CSI).In the proposed scheme,SM is used to activate one antenna from the transmit antennas,and the information symbols will be transmitted with the designed AN at each timeslot.By utilizing the legitimate channel’s imperfect CSI,AN is generated across two adjacent timeslots.Because the CSI is known at the legitimate receiver,then it can perfectly cancel the AN.However,the eavesdropper knows nothing of the legitimate channel’s CSI,so it can not recover any useful information from the AN.At the receiver,a new detection scheme that detects across two adjacent timeslots is also proposed.With imperfect CSI,the secrecy rate of the proposed scheme is derived over Rayleigh fading channels in order to investigate the performance.Moreover,based on the secrecy performance analysis,the lower bound of the ergodic secrecy rate(ESR),the corresponding closed form of the lower bound,and the approximated expression are also derived.The simulation results verified in this paper prove that the proposed scheme with imperfect CSI can achieve satisfactory performance.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
基金supported in part by National Natural Science Foundation of China under Grant 62461024Jiangxi Provincial Natural Science Foundation of China under Grant 20224ACB202001.
文摘In high-speed railway(HSR)wireless communication,the rapid channel changes and limited high-capacity access cause significant impact on the link performance.Meanwhile,the Doppler shift caused by high mobility leads to the inter-carrier interference.In this paper,we propose a reconfigurable intelligent surface(RIS)-assisted receive spatial modulation(SM)scheme based on the spatial-temporal correlated HSR Rician channel.The characteristics of SM and the phase shift adjustment of RIS are used to mitigate the performance degradation in high mobility scenarios.Considering the influence of channel spatial-temporal correlation and Doppler shift,the effects of different parameters on average bit error rate(BER)performance and upper bound of ergodic capacity are analyzed.Therefore,a joint antenna and RIS-unit selection algorithm based on the antenna removal method is proposed to increase the capacity performance of communication links.Numerical results show that the proposed RIS-assisted receive SM scheme can maintain high transmission capacity compared to the conventional HSR-SM scheme,whereas the degradation of BER performance can be compensated by arranging a large number of RIS-units.In addition,selecting more RIS-units has better capacity performance than activating more antennas in the low signal-to-noise ratio regions.
基金co-supported by the National Nature Science Foundation of China(No.12303071)the Shanghai Science and Technology Plan Project,China(No.23YF1455500)+1 种基金the China Postdoctoral Science Foundation(No.2023M743653)Ministry of Industry and Information Technology of China through the High Precision Timing Service Project(No.TC220A04A-80)。
文摘The mathematical method of ZTD(zenith tropospheric delay)spatial prediction is important for precise ZTD derivation and real-time precise point positioning(PPP)augmentation.This paper analyses the performance of the popular optimal function coefficient(OFC),sphere cap harmonic analysis(SCHA),kriging and inverse distance weighting(IDW)interpolation in ZTD spatial prediction and Beidou satellite navigation system(BDS)-PPP augmentation over China.For ZTD spatial prediction,the average time consumption of the OFC,kriging,and IDW methods is less than 0.1 s,which is significantly better than that of the SCHA method(63.157 s).The overall ZTD precision of the OFC is 3.44 cm,which outperforms those of the SCHA(9.65 cm),Kriging(10.6 cm),and IDW(11.8 cm)methods.We confirmed that the low performance of kriging and IDW is caused by their weakness in modelling ZTD variation in the vertical direction.To mitigate such deficiencies,an elevation normalization factor(ENF)is introduced into the kriging and IDW models(kriging-ENF and IDW-ENF).The overall ZTD spatial prediction accuracies of IDW-ENF and kriging-ENF are 2.80 cm and 2.01 cm,respectively,which are both superior to those of the OFC and the widely used empirical model GPT3(4.92 cm).For BDS-PPP enhancement,the ZTD provided by the kriging-ENF,IDW-ENF and OFC as prior constraints can effectively reduce the convergence time.Compared with unconstrained BDS-PPP,our proposed kriging-ENF outperforms IDW-ENF and OFC by reducing the horizontal and vertical convergence times by approximately 13.2%and 5.8%in Ningxia and 30.4%and 7.84%in Guangdong,respectively.These results indicate that kriging-ENF is a promising method for ZTD spatial prediction and BDS-PPP enhancement over China.
基金supported in part by the NSF of China under Grant 62322106,62071131the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070in part by the Open Research Fund of the State Key Laboratory of Integrated Services Networks under Grant ISN22-23the National Research Foundation,Singapore University of Technology Design under its Future Communications Research&Development Programme“Advanced Error Control Coding for 6G URLLC and mMTC”Grant No.FCP-NTU-RG-2022-020.
文摘This paper investigates the bit-interleaved coded generalized spatial modulation(BICGSM) with iterative decoding(BICGSM-ID) for multiple-input multiple-output(MIMO) visible light communications(VLC). In the BICGSM-ID scheme, the information bits conveyed by the signal-domain(SiD) symbols and the spatial-domain(SpD) light emitting diode(LED)-index patterns are coded by a protograph low-density parity-check(P-LDPC) code. Specifically, we propose a signal-domain symbol expanding and re-allocating(SSER) method for constructing a type of novel generalized spatial modulation(GSM) constellations, referred to as SSERGSM constellations, so as to boost the performance of the BICGSM-ID MIMO-VLC systems.Moreover, by applying a modified PEXIT(MPEXIT) algorithm, we further design a family of rate-compatible P-LDPC codes, referred to as enhanced accumulate-repeat-accumulate(EARA) codes,which possess both excellent decoding thresholds and linear-minimum-distance-growth property. Both analysis and simulation results illustrate that the proposed SSERGSM constellations and P-LDPC codes can remarkably improve the convergence and decoding performance of MIMO-VLC systems. Therefore, the proposed P-LDPC-coded SSERGSM-mapped BICGSMID configuration is envisioned as a promising transmission solution to satisfy the high-throughput requirement of MIMO-VLC applications.
基金supported in part by The Science and Technology Development Fund, Macao SAR, China (0108/2020/A3)in part by The Science and Technology Development Fund, Macao SAR, China (0005/2021/ITP)the Deanship of Scientific Research at Taif University for funding this work。
文摘With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
文摘In spatial modulation systems,the reliability of the active antenna detection is of vital importance since the modulated symbols tend to be correctly demodulated when the active antennas are accurately identified.In this paper,we propose a spatial coded modulation(SCM)scheme,which improves the accuracy of the active antenna detection by coding over the transmit antennas.Specifically,the antenna activation pattern in the SCM corresponds to a codeword in a properly designed codebook with a larger minimum Hamming distance than the conventional spatial modulation.As the minimum Hamming distance increases,the reliability of the active antenna detection is directly enhanced,which yields a better system reliability.In addition to the reliability,the proposed SCM scheme also achieves a higher capacity with the identical antenna configuration compared to the conventional counterpart.The optimal maximum likelihood detector is first formulated.Then,a low-complexity suboptimal detector is proposed to reduce the computational complexity.Theoretical derivations of the channel capacity and the bit error rate are presented in various channel scenarios.Further derivation on performance bounding is also provided to reveal the insight of the benefit of increasing the minimum Hamming distance.Numerical results validate the analysis and demonstrate that the proposed SCM outperforms the conventional spatial modulation techniques in both channel capacity and system reliability.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(Grant No.2020B0301030009)the National Key Research and Development Program of China(Grant No.2022YFA1604304)the National Natural Science Foundation of China(Grant No.92250305).
文摘Plasmonic modes within metal nanostructures play a pivotal role in various nanophotonic applications.However,a significant challenge arises from the fixed shapes of nanostructures post-fabrication,resulting in limited modes under ordinary illumination.A promising solution lies in far-field control facilitated by spatial light modulators(SLMs),which enable on-site,real-time,and non-destructive manipulation of plasmon excitation.Through the robust modulation of the incident light using SLMs,this approach enables the generation,optimization,and dynamic control of surface plasmon polariton(SPP)and localized surface plasmon(LSP)modes.The versatility of this technique introduces a rich array of tunable degrees of freedom to plasmon-enhanced spectroscopy,offering novel approaches for signal optimization and functional expansion in this field.This paper provides a comprehensive review of the generation and modulation of SPP and LSP modes through far-field control with SLMs and highlights the diverse applications of this optical technology in plasmon-enhanced spectroscopy.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.
基金supported by the French ANRT agence nationale de la recherche technologique under the CIFRE conventions industrielles de formation par la recherche framework.
文摘This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators,with a particular focus on liquid crystal-based systems.We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing.Specifically,we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency,both critical for surface and bulk processing applications.Given the inherent physical limitations of spatial light modulators such as spatial resolution,fill factor,and phase modulation range.We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles.We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns.The paper includes application examples across a wide range of fields,from surgery to surface structuring,cutting,bulk photo-inscription of optical functions,and additive manufacturing,highlighting the significant enhancements in processing speed and precision due to spatial beam shaping.The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods.We discuss several advancements addressing these challenges,involving both experimental and algorithmic developments,including the recent incorporation of artificial intelligence.Additionally,we cover recent progress in phase and pulse front control based on spatial modulators,which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.
基金Projects(51875584,51875585,51975590)supported by the National Natural Science Foundation of China。
文摘Femtosecond laser processing is an important machining method for micro-optical components such as Fresnel zone plate(FZP).However,the low processing efficiency of the femtosecond laser restricts its application.Here,a femtosecond laser Bessel beam is proposed to process micro-FZP,which is modulated from a Gaussian beam to a Bessel annular beam.The processing time for FZP with an outer diameter of 60μm is reduced from 30 min to 1.5 min on an important semiconductor material gallium arsenide(GaAs),which significantly improves the processing efficiency.In the modulation process,a central ablation hole that has an adverse effect on the diffraction performance is produced,and the adverse effect is eliminated by superimposing the blazed grating hologram.Meanwhile,the FZP machined by spatial light modulator(SLM)has good morphology and higher diffraction efficiency,which provides a strong guarantee for the application of micro-FZP in computed tomography and solar photovoltaic cells.
基金supported by Science and Technology Project of China Southern Power Grid (SZKJXM20230049/090000KC23010038)。
文摘Solid-state batteries(SSBs) with high safety are promising for the energy fields,but the development has long been limited by machinability and interfacial problems.Hence,self-supporting,flexible Nano LLZO CSEs are prepared with a solvent-free method at 25℃.The 99.8 wt% contents of Nano LLZO particles enable the Nano LLZO CSEs to maintain good thermal stability while exhibiting a wide electrochemical window of 5.0 V and a high Li~+ transfer number of 0.8.The mean modulus reaches 4376 MPa.Benefiting from the interfacial modulation,the Li|Li symmetric batteries based on the Nano LLZO CSEs show benign stability with lithium at the current densities of 0.1 mA cm^(-2),0.2 mA cm^(-2),and 0.5 mA cm^(-2).In addition,the Li|LiFePO_(4)(LFP) SSBs achieve favorable cycling performance:the specific capacity reaches128.1 mAh g^(-1) at 0.5 C rate,with a capacity retention of about 80% after 600 cycles.In the further tests of the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811) cathodes with higher energy density,the Nano LLZO CSEs also demonstrate good compatibility:the specific capacities of NCM811-based SSBs reach 177.9 mAh g^(-1) at 0.5 C rate,while the capacity retention is over 96% after 150 cycles.Furthermore,the Li|LFP soft-pack SSBs verify the safety characteristics and the potential for application,which have a desirable prospect.
基金supported by the National Natural Science Foundation of China(Grant Nos.41941017 and U1702241).
文摘Estimating fracture size is a fundamental aspect of rock engineering.However,determining the most probable diameter(MPD)from a fracture's surface trace remains challenging in the scientific community.The prevailing methodologies typically infer statistical distributions of fracture sizes rather than specific values.This research presents a novel approach to inferring the MPD and the true spatial distribution pattern of each fracture.The challenge lies in linking the inference process with the trace length of each fracture and the statistical characteristics of the entire outcrop.Additionally,it is necessary to address the non-unique inverse problem.The methodology comprises several key steps.Firstly,the issue of censoring bias is addressed by considering the lengths of the traces contained.Secondly,the orientation bias is corrected using the vector method,and the true mean trace length and standard deviation are estimated and derived.Thirdly,assuming a lognormal distribution for fracture sizes,the mean and standard deviation of diameters are derived through a high-order moment relationship between trace lengths and diameters,validated by Crofton's theorem.Finally,the MPDs of all trace samples are determined by relating MPDs to trace lengths and the standard deviation of diameters using stereology techniques.Furthermore,the true fracture spatial patterns are inverted based on spatial geometric relationships.The proposed methodology is validated through rigorous Monte Carlo simulation and applied in a practical engineering case study,demonstrating its potential for use in rock engineering applications.
基金Supported by Fundamental Research Funds for the Central Universities(Grant No.2024QYBS031)Fundamental Research Funds for the Central Universities(Grant No.2022JBQY007)。
文摘Current research on rail vehicle system vibrations primarily relies on numerical methods,with vibration transfer functions commonly derived through data fitting.However,the physical mechanisms underlying these vibrations are not well understood.To clarify the vibration transfer function and its characteristics,four basic input vectors are defined,and an analytical method is proposed.The vibration transfer functions of the vehicle system are solved,and their spatial coherence is analyzed.The results show that there are two spatial scales and four coherent modes in the vehicle system.The track irregularity wavelengths are combined with two spatial scales to alter the proportions of basic input vectors and then show the characteristics of spatial coherence.Four coherent modes are involved in wheel-rail force and primary suspension force;two coherent modes are involved in bogie vertical motion;and their dominant modes vary with the input frequency.On the other hand,the coherent modes involved in the bogie pitching motion and vehicle body motion are single and fixed over the whole range of frequency.This study presents an analytical method for the rapid solution of dynamic responses in vehicle systems and systematically analyzes the coherence behavior of vibration transfer functions with respect to tracking irregularity wavelengths.
基金supported by the National Natural Science Foundation of China(Nos.41807264,41972289)the Engineering Research Center of Rock-Soil Drilling&Excavation and Protection,Ministry of Education(No.202102)+3 种基金the Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University),Ministry of Education(No.2020KDZ01)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Nos.CUG170686,CUGQY1932)the China Scholarship Council(No.201406410032)the Science and Technology Research Project of Education Department of Hubei Province(Nos.B2019452,B2024509)。
文摘A DFN-DEC(discrete fracture network-distinct element code)method based on the MATLAB platform is developed to generate heterogeneous DFN.Subsequently,the effects of the spatial variability(the meanμand the standard deviationσ)of the geometric properties(i.e.,the fracture dip D,the trace length T and the spacing S)of both the gently-dipping(denoted with 1)and the steeply-dipping(denoted with 2)fractures on the stability of granite slope are investigated.Results indicate that the proposed DFN-DEC method is robust,generating fracture networks that resemble reality.In addition,the spatial variability of fracture geometry,influencing the structure of granite slope,plays a significant role in slope stability.The mean stability of the slope decreases with the increase ofμ_(D_(1))(the mean of gently-dipping fracture dip),σ_(D_(2))(the mean of steeply-dipping fracture dip),μ_(T_(1))(the mean of gently-dipping fracture trace length),μ_(T_(2))(the mean of steeply-dipping fracture trace length),σ_(T_(1))(the standard deviation of gently-dipping fracture trace length),σ_(T_(2))(the standard deviation of steeply-dipping fracture trace length),and the decrease ofσ_(D_(1))(the standard deviation of gently-dipping fracture dip),μ_(D_(2))(the standard deviation of steeply-dipping fracture dip),μ_(S_(1))(the mean of gently-dipping fracture spacing)andμ_(S_(2))(the mean of steeply-dipping fracture spacing).Among them,μ_(T_(1)),μ_(D_(1))andμ_(S_(1))have the major impact.When the fracture spacing is large,the variability in the fracture geometry becomes less relevant to slope stability.When within some ranges of the fracture spacing,the spatial varying of dips can increase the slope stability by forming an interlaced structure.The results also show that the effects of the variability of trace length on slope stability depend on the variability of dip.These findings highlight the importance of spatial variability in the geometry of fractures to rock slope stability analysis.
基金supported by the Henan Province science and technology research project(Grant No.242102321031)National Natural Science Foundation of China(grant numbers 42207200).
文摘Near-surface geological defects pose a serious threat to human life and infrastructure.Hence,the exploration of geological hazards is essential.Currently,there are various geological hazard exploration methods;however,those require improvements in terms of economic feasibility,convenience,and lateral resolution.To address this,this study examined an extraction method to determine spatial autocorrelation velocity dispersion curves for application in near-surface exploration.
文摘Correction to:Nano-Micro Letters(2025)17:117 https://doi.org/10.1007/s40820-025-01660-0 Following publication of the original article[1],the authors reported that the supplementary file needed to be updated because they mistakenly used the incorrect version.The original article[1]has been corrected.
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.